123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- /* bdtrf.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrf();
- *
- * y = bdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.9e-5 1.1e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrf domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrcf()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrcf();
- *
- * y = bdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.0e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrcf domain x<0, x>1, n<k 0.0
- */
- /* bdtrif()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrif();
- *
- * p = bdtrf( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 3.5e-5 3.3e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrif domain k < 0, n <= k 0.0
- * x < 0, x > 1
- *
- */
- /* bdtr() */
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- #ifdef ANSIC
- float incbetf(float, float, float), powf(float, float);
- float incbif( float, float, float );
- #else
- float incbetf(), powf(), incbif();
- #endif
- float bdtrcf( int k, int n, float pp )
- {
- float p, dk, dn;
- p = pp;
- if( (p < 0.0) || (p > 1.0) )
- goto domerr;
- if( k < 0 )
- return( 1.0 );
- if( n < k )
- {
- domerr:
- mtherr( "bdtrcf", DOMAIN );
- return( 0.0 );
- }
- if( k == n )
- return( 0.0 );
- dn = n - k;
- if( k == 0 )
- {
- dk = 1.0 - powf( 1.0-p, dn );
- }
- else
- {
- dk = k + 1;
- dk = incbetf( dk, dn, p );
- }
- return( dk );
- }
- float bdtrf( int k, int n, float pp )
- {
- float p, dk, dn;
- p = pp;
- if( (p < 0.0) || (p > 1.0) )
- goto domerr;
- if( (k < 0) || (n < k) )
- {
- domerr:
- mtherr( "bdtrf", DOMAIN );
- return( 0.0 );
- }
- if( k == n )
- return( 1.0 );
- dn = n - k;
- if( k == 0 )
- {
- dk = powf( 1.0-p, dn );
- }
- else
- {
- dk = k + 1;
- dk = incbetf( dn, dk, 1.0 - p );
- }
- return( dk );
- }
- float bdtrif( int k, int n, float yy )
- {
- float y, dk, dn, p;
- y = yy;
- if( (y < 0.0) || (y > 1.0) )
- goto domerr;
- if( (k < 0) || (n <= k) )
- {
- domerr:
- mtherr( "bdtrif", DOMAIN );
- return( 0.0 );
- }
- dn = n - k;
- if( k == 0 )
- {
- p = 1.0 - powf( y, 1.0/dn );
- }
- else
- {
- dk = k + 1;
- p = 1.0 - incbif( dn, dk, y );
- }
- return( p );
- }
|