123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- /* ellief.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellief();
- *
- * y = ellief( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 4.5e-7 7.4e-8
- *
- *
- */
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- /* Incomplete elliptic integral of second kind */
- #include <math.h>
- extern float PIF, PIO2F, MACHEPF;
- #define fabsf(x) ( (x) < 0 ? -(x) : (x) )
- #ifdef ANSIC
- float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float);
- float ellpef(float), ellpkf(float);
- #else
- float sqrtf(), logf(), sinf(), tanf(), atanf();
- float ellpef(), ellpkf();
- #endif
- float ellief( float phia, float ma )
- {
- float phi, m, a, b, c, e, temp;
- float lphi, t;
- int d, mod;
- phi = phia;
- m = ma;
- if( m == 0.0 )
- return( phi );
- if( m == 1.0 )
- return( sinf(phi) );
- lphi = phi;
- if( lphi < 0.0 )
- lphi = -lphi;
- a = 1.0;
- b = 1.0 - m;
- b = sqrtf(b);
- c = sqrtf(m);
- d = 1;
- e = 0.0;
- t = tanf( lphi );
- mod = (lphi + PIO2F)/PIF;
- while( fabsf(c/a) > MACHEPF )
- {
- temp = b/a;
- lphi = lphi + atanf(t*temp) + mod * PIF;
- mod = (lphi + PIO2F)/PIF;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = 0.5 * ( a - b );
- temp = sqrtf( a * b );
- a = 0.5 * ( a + b );
- b = temp;
- d += d;
- e += c * sinf(lphi);
- }
- b = 1.0 - m;
- temp = ellpef(b)/ellpkf(b);
- temp *= (atanf(t) + mod * PIF)/(d * a);
- temp += e;
- if( phi < 0.0 )
- temp = -temp;
- return( temp );
- }
|