123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- /* sinf.c
- *
- * Circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sinf();
- *
- * y = sinf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -4096,+4096 100,000 1.2e-7 3.0e-8
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2^24 0.0
- *
- * Partial loss of accuracy begins to occur at x = 2^13
- * = 8192. Results may be meaningless for x >= 2^24
- * The routine as implemented flags a TLOSS error
- * for x >= 2^24 and returns 0.0.
- */
- /* cosf.c
- *
- * Circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cosf();
- *
- * y = cosf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1988, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- /* Single precision circular sine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 6.8e-8
- * rms relative error: 2.6e-8
- */
- #include <math.h>
- static float FOPI = 1.27323954473516;
- extern float PIO4F;
- /* Note, these constants are for a 32-bit significand: */
- /*
- static float DP1 = 0.7853851318359375;
- static float DP2 = 1.30315311253070831298828125e-5;
- static float DP3 = 3.03855025325309630e-11;
- static float lossth = 65536.;
- */
- /* These are for a 24-bit significand: */
- static float DP1 = 0.78515625;
- static float DP2 = 2.4187564849853515625e-4;
- static float DP3 = 3.77489497744594108e-8;
- static float lossth = 8192.;
- static float T24M1 = 16777215.;
- static float sincof[] = {
- -1.9515295891E-4,
- 8.3321608736E-3,
- -1.6666654611E-1
- };
- static float coscof[] = {
- 2.443315711809948E-005,
- -1.388731625493765E-003,
- 4.166664568298827E-002
- };
- float sinf( float xx )
- {
- float *p;
- float x, y, z;
- register unsigned long j;
- register int sign;
- sign = 1;
- x = xx;
- if( xx < 0 )
- {
- sign = -1;
- x = -xx;
- }
- if( x > T24M1 )
- {
- mtherr( "sinf", TLOSS );
- return(0.0);
- }
- j = FOPI * x; /* integer part of x/(PI/4) */
- y = j;
- /* map zeros to origin */
- if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
- j &= 7; /* octant modulo 360 degrees */
- /* reflect in x axis */
- if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
- if( x > lossth )
- {
- mtherr( "sinf", PLOSS );
- x = x - y * PIO4F;
- }
- else
- {
- /* Extended precision modular arithmetic */
- x = ((x - y * DP1) - y * DP2) - y * DP3;
- }
- /*einits();*/
- z = x * x;
- if( (j==1) || (j==2) )
- {
- /* measured relative error in +/- pi/4 is 7.8e-8 */
- /*
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- */
- p = coscof;
- y = *p++;
- y = y * z + *p++;
- y = y * z + *p++;
- y *= z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
- else
- {
- /* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */
- /*
- y = ((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x;
- y += x;
- */
- p = sincof;
- y = *p++;
- y = y * z + *p++;
- y = y * z + *p++;
- y *= z * x;
- y += x;
- }
- /*einitd();*/
- if(sign < 0)
- y = -y;
- return( y);
- }
- /* Single precision circular cosine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.3e-8
- * rms relative error: 2.2e-8
- */
- float cosf( float xx )
- {
- float x, y, z;
- int j, sign;
- /* make argument positive */
- sign = 1;
- x = xx;
- if( x < 0 )
- x = -x;
- if( x > T24M1 )
- {
- mtherr( "cosf", TLOSS );
- return(0.0);
- }
- j = FOPI * x; /* integer part of x/PIO4 */
- y = j;
- /* integer and fractional part modulo one octant */
- if( j & 1 ) /* map zeros to origin */
- {
- j += 1;
- y += 1.0;
- }
- j &= 7;
- if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
- if( j > 1 )
- sign = -sign;
- if( x > lossth )
- {
- mtherr( "cosf", PLOSS );
- x = x - y * PIO4F;
- }
- else
- /* Extended precision modular arithmetic */
- x = ((x - y * DP1) - y * DP2) - y * DP3;
- z = x * x;
- if( (j==1) || (j==2) )
- {
- y = (((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x)
- + x;
- }
- else
- {
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
- if(sign < 0)
- y = -y;
- return( y );
- }
|