| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 | /* Atomic operations used inside libc.  Linux/SH version.   Copyright (C) 2003 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  */#include <stdint.h>typedef int8_t atomic8_t;typedef uint8_t uatomic8_t;typedef int_fast8_t atomic_fast8_t;typedef uint_fast8_t uatomic_fast8_t;typedef int16_t atomic16_t;typedef uint16_t uatomic16_t;typedef int_fast16_t atomic_fast16_t;typedef uint_fast16_t uatomic_fast16_t;typedef int32_t atomic32_t;typedef uint32_t uatomic32_t;typedef int_fast32_t atomic_fast32_t;typedef uint_fast32_t uatomic_fast32_t;typedef int64_t atomic64_t;typedef uint64_t uatomic64_t;typedef int_fast64_t atomic_fast64_t;typedef uint_fast64_t uatomic_fast64_t;typedef intptr_t atomicptr_t;typedef uintptr_t uatomicptr_t;typedef intmax_t atomic_max_t;typedef uintmax_t uatomic_max_t;/* SH kernel has implemented a gUSA ("g" User Space Atomicity) support   for the user space atomicity. The atomicity macros use this scheme.  Reference:    Niibe Yutaka, "gUSA: Simple and Efficient User Space Atomicity    Emulation with Little Kernel Modification", Linux Conference 2002,    Japan. http://lc.linux.or.jp/lc2002/papers/niibe0919h.pdf (in    Japanese).    Niibe Yutaka, "gUSA: User Space Atomicity with Little Kernel    Modification", LinuxTag 2003, Rome.    http://www.semmel.ch/Linuxtag-DVD/talks/170/paper.html (in English).    B.N. Bershad, D. Redell, and J. Ellis, "Fast Mutual Exclusion for    Uniprocessors",  Proceedings of the Fifth Architectural Support for    Programming Languages and Operating Systems (ASPLOS), pp. 223-233,    October 1992. http://www.cs.washington.edu/homes/bershad/Papers/Rcs.ps  SuperH ABI:      r15:    -(size of atomic instruction sequence) < 0      r0:     end point      r1:     saved stack pointer*//* Avoid having lots of different versions of compare and exchange,   by having this one complicated version. Parameters:      bwl:     b, w or l for 8, 16 and 32 bit versions.      version: val or bool, depending on whether the result is the               previous value or a bool indicating whether the transfer               did happen (note this needs inverting before being               returned in atomic_compare_and_exchange_bool).*/#define __arch_compare_and_exchange_n(mem, newval, oldval, bwl, version) \  ({ signed long __arch_result; \     __asm__ __volatile__ ("\	.align 2\n\	mova 1f,r0\n\	nop\n\	mov r15,r1\n\	mov #-8,r15\n\     0: mov." #bwl " @%1,%0\n\	cmp/eq %0,%3\n\	bf 1f\n\	mov." #bwl " %2,@%1\n\     1: mov r1,r15\n\     .ifeqs \"bool\",\"" #version "\"\n\        movt %0\n\     .endif\n"					\	: "=&r" (__arch_result)			\	: "r" (mem), "r" (newval), "r" (oldval)	\	: "r0", "r1", "t", "memory");		\     __arch_result; })#define __arch_compare_and_exchange_val_8_acq(mem, newval, oldval) \  __arch_compare_and_exchange_n(mem, newval, (int8_t)(oldval), b, val)#define __arch_compare_and_exchange_val_16_acq(mem, newval, oldval) \  __arch_compare_and_exchange_n(mem, newval, (int16_t)(oldval), w, val)#define __arch_compare_and_exchange_val_32_acq(mem, newval, oldval) \  __arch_compare_and_exchange_n(mem, newval, (int32_t)(oldval), l, val)/* XXX We do not really need 64-bit compare-and-exchange.  At least   not in the moment.  Using it would mean causing portability   problems since not many other 32-bit architectures have support for   such an operation.  So don't define any code for now.  */# define __arch_compare_and_exchange_val_64_acq(mem, newval, oldval) \  (abort (), 0)/* For "bool" routines, return if the exchange did NOT occur */#define __arch_compare_and_exchange_bool_8_acq(mem, newval, oldval) \  (! __arch_compare_and_exchange_n(mem, newval, (int8_t)(oldval), b, bool))#define __arch_compare_and_exchange_bool_16_acq(mem, newval, oldval) \  (! __arch_compare_and_exchange_n(mem, newval, (int16_t)(oldval), w, bool))#define __arch_compare_and_exchange_bool_32_acq(mem, newval, oldval) \  (! __arch_compare_and_exchange_n(mem, newval, (int32_t)(oldval), l, bool))# define __arch_compare_and_exchange_bool_64_acq(mem, newval, oldval) \  (abort (), 0)/* Similar to the above, have one template which can be used in a   number of places. This version returns both the old and the new   values of the location. Parameters:      bwl:     b, w or l for 8, 16 and 32 bit versions.      oper:    The instruction to perform on the old value.   Note old is not sign extended, so should be an unsigned long.*/#define __arch_operate_old_new_n(mem, value, old, new, bwl, oper)	\  (void) ({ __asm__ __volatile__ ("\	.align 2\n\	mova 1f,r0\n\	mov r15,r1\n\	nop\n\	mov #-8,r15\n\     0: mov." #bwl " @%2,%0\n\	mov %0,%1\n\	" #oper " %3,%1\n\	mov." #bwl " %1,@%2\n\     1: mov r1,r15"			\	: "=&r" (old), "=&r"(new)	\	: "r" (mem), "r" (value)	\	: "r0", "r1", "memory");	\    })#define __arch_exchange_and_add_8_int(mem, value)			\  ({ int32_t __value = (value), __new, __old;				\    __arch_operate_old_new_n((mem), __value, __old, __new, b, add);	\    __old; })#define __arch_exchange_and_add_16_int(mem, value)			\  ({ int32_t __value = (value), __new, __old;				\    __arch_operate_old_new_n((mem), __value, __old, __new, w, add);	\    __old; })#define __arch_exchange_and_add_32_int(mem, value)			\  ({ int32_t __value = (value), __new, __old;				\    __arch_operate_old_new_n((mem), __value, __old, __new, l, add);	\    __old; })#define __arch_exchange_and_add_64_int(mem, value)			\  (abort (), 0)#define atomic_exchange_and_add(mem, value) \  __atomic_val_bysize (__arch_exchange_and_add, int, mem, value)/* Again, another template. We get a slight optimisation when the old value   does not need to be returned. Parameters:      bwl:     b, w or l for 8, 16 and 32 bit versions.      oper:    The instruction to perform on the old value.*/#define __arch_operate_new_n(mem, value, bwl, oper)	 \  ({ int32_t __value = (value), __new; \     __asm__ __volatile__ ("\	.align 2\n\	mova 1f,r0\n\	mov r15,r1\n\	mov #-6,r15\n\     0: mov." #bwl " @%1,%0\n\	" #oper " %2,%0\n\	mov." #bwl " %0,@%1\n\     1: mov r1,r15"			\	: "=&r" (__new)			\	: "r" (mem), "r" (__value)	\	: "r0", "r1", "memory");	\     __new;				\  })#define __arch_add_8_int(mem, value)		\  __arch_operate_new_n(mem, value, b, add)#define __arch_add_16_int(mem, value)		\  __arch_operate_new_n(mem, value, w, add)#define __arch_add_32_int(mem, value)		\  __arch_operate_new_n(mem, value, l, add)#define __arch_add_64_int(mem, value)		\  (abort (), 0)#define atomic_add(mem, value) \  ((void) __atomic_val_bysize (__arch_add, int, mem, value))#define __arch_add_negative_8_int(mem, value)		\  (__arch_operate_new_n(mem, value, b, add) < 0)#define __arch_add_negative_16_int(mem, value)		\  (__arch_operate_new_n(mem, value, w, add) < 0)#define __arch_add_negative_32_int(mem, value)		\  (__arch_operate_new_n(mem, value, l, add) < 0)#define __arch_add_negative_64_int(mem, value)		\  (abort (), 0)#define atomic_add_negative(mem, value) \  __atomic_bool_bysize (__arch_add_negative, int, mem, value)#define __arch_add_zero_8_int(mem, value)		\  (__arch_operate_new_n(mem, value, b, add) == 0)#define __arch_add_zero_16_int(mem, value)		\  (__arch_operate_new_n(mem, value, w, add) == 0)#define __arch_add_zero_32_int(mem, value)		\  (__arch_operate_new_n(mem, value, l, add) == 0)#define __arch_add_zero_64_int(mem, value)		\  (abort (), 0)#define atomic_add_zero(mem, value) \  __atomic_bool_bysize (__arch_add_zero, int, mem, value)#define atomic_increment_and_test(mem) atomic_add_zero((mem), 1)#define atomic_decrement_and_test(mem) atomic_add_zero((mem), -1)#define __arch_bit_set_8_int(mem, value)		\  __arch_operate_new_n(mem, 1<<(value), b, or)#define __arch_bit_set_16_int(mem, value)		\  __arch_operate_new_n(mem, 1<<(value), w, or)#define __arch_bit_set_32_int(mem, value)		\  __arch_operate_new_n(mem, 1<<(value), l, or)#define __arch_bit_set_64_int(mem, value)		\  (abort (), 0)#define __arch_add_64_int(mem, value)			\  (abort (), 0)#define atomic_bit_set(mem, value) \  ((void) __atomic_val_bysize (__arch_bit_set, int, mem, value))#define __arch_bit_test_set_8_int(mem, value)				\  ({ int32_t __value = 1<<(value), __new, __old;			\    __arch_operate_old_new_n((mem), __value, __old, __new, b, or);	\    __old & __value; })#define __arch_bit_test_set_16_int(mem, value)				\  ({ int32_t __value = 1<<(value), __new, __old;			\    __arch_operate_old_new_n((mem), __value, __old, __new, w, or);	\    __old & __value; })#define __arch_bit_test_set_32_int(mem, value)				\  ({ int32_t __value = 1<<(value), __new, __old;			\    __arch_operate_old_new_n((mem), __value, __old, __new, l, or);	\    __old & __value; })#define __arch_bit_test_set_64_int(mem, value)	\  (abort (), 0)#define atomic_bit_test_set(mem, value) \  __atomic_val_bysize (__arch_bit_test_set, int, mem, value)
 |