| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 | /* Optimized version of the standard memcmp() function.   This file is part of the GNU C Library.   Copyright (C) 2000, 2001, 2004 Free Software Foundation, Inc.   Contributed by Dan Pop <Dan.Pop@cern.ch>.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  *//* Return: the result of the comparison   Inputs:        in0:    dest (aka s1)        in1:    src  (aka s2)        in2:    byte count   In this form, it assumes little endian mode.  For big endian mode, the   the two shifts in .l2 must be inverted:	shl   	tmp1[0] = r[1 + MEMLAT], sh1   // tmp1 = w0 << sh1	shr.u   tmp2[0] = r[0 + MEMLAT], sh2   // tmp2 = w1 >> sh2   and all the mux1 instructions should be replaced by plain mov's.  */#include "sysdep.h"#undef ret#define OP_T_THRES 	16#define OPSIZ 		8#define MEMLAT		2#define start		r15#define saved_pr	r17#define saved_lc	r18#define dest		r19#define src		r20#define len		r21#define asrc		r22#define tmp		r23#define value1		r24#define value2		r25#define sh2		r28#define	sh1		r29#define loopcnt		r30ENTRY(memcmp)	.prologue	alloc 	r2 = ar.pfs, 3, 37, 0, 40	.rotr	r[MEMLAT + 2], q[MEMLAT + 5], tmp1[4], tmp2[4], val[2]	.rotp	p[MEMLAT + 4 + 1]	mov	ret0 = r0		// by default return value = 0	.save pr, saved_pr	mov	saved_pr = pr		// save the predicate registers	.save ar.lc, saved_lc        mov 	saved_lc = ar.lc	// save the loop counter	.body	mov 	dest = in0		// dest	mov 	src = in1		// src	mov	len = in2		// len	sub	tmp = r0, in0		// tmp = -dest	;;	and	loopcnt = 7, tmp		// loopcnt = -dest % 8	cmp.ge	p6, p0 = OP_T_THRES, len	// is len <= OP_T_THRES(p6)	br.cond.spnt	.cmpfew			// compare byte by byte	;;	cmp.eq	p6, p0 = loopcnt, r0(p6)	br.cond.sptk .dest_aligned	sub	len = len, loopcnt	// len -= -dest % 8	adds	loopcnt = -1, loopcnt	// --loopcnt	;;	mov	ar.lc = loopcnt.l1:					// copy -dest % 8 bytes	ld1	value1 = [src], 1	// value = *src++	ld1	value2 = [dest], 1	;;	cmp.ne	p6, p0 = value1, value2(p6)	br.cond.spnt .done	br.cloop.dptk .l1.dest_aligned:	and	sh1 = 7, src 		// sh1 = src % 8	and	tmp = -8, len   	// tmp = len & -OPSIZ	and	asrc = -8, src		// asrc = src & -OPSIZ  -- align src	shr.u	loopcnt = len, 3	// loopcnt = len / 8	and	len = 7, len ;;		// len = len % 8	shl	sh1 = sh1, 3		// sh1 = 8 * (src % 8)	adds	loopcnt = -1, loopcnt	// --loopcnt	mov     pr.rot = 1 << 16 ;;	// set rotating predicates	sub	sh2 = 64, sh1		// sh2 = 64 - sh1	mov	ar.lc = loopcnt		// set LC	cmp.eq  p6, p0 = sh1, r0 	// is the src aligned?(p6)    br.cond.sptk .src_aligned	add	src = src, tmp		// src += len & -OPSIZ	mov	ar.ec = MEMLAT + 4 + 1 	// four more passes needed	ld8	r[1] = [asrc], 8 ;;	// r[1] = w0	.align	32// We enter this loop with p6 cleared by the above comparison.l2:(p[0])		ld8	r[0] = [asrc], 8		// r[0] = w1(p[0])		ld8	q[0] = [dest], 8(p[MEMLAT])	shr.u	tmp1[0] = r[1 + MEMLAT], sh1	// tmp1 = w0 >> sh1(p[MEMLAT])	shl	tmp2[0] = r[0 + MEMLAT], sh2  	// tmp2 = w1 << sh2(p[MEMLAT+4])	cmp.ne	p6, p0 = q[MEMLAT + 4], val[1](p[MEMLAT+3])	or	val[0] = tmp1[3], tmp2[3] 	// val = tmp1 | tmp2(p6)		br.cond.spnt .l2exit		br.ctop.sptk    .l2		br.cond.sptk .cmpfew.l3exit:	mux1	value1 = r[MEMLAT], @rev	mux1	value2 = q[MEMLAT], @rev	cmp.ne	p6, p0 = r0, r0	;;	// clear p6.l2exit:(p6)	mux1	value1 = val[1], @rev(p6)	mux1	value2 = q[MEMLAT + 4], @rev ;;	cmp.ltu	p6, p7 = value2, value1 ;;(p6)	mov	ret0 = -1(p7)	mov	ret0 = 1	mov     pr = saved_pr, -1    	// restore the predicate registers	mov 	ar.lc = saved_lc	// restore the loop counter	br.ret.sptk.many b0.src_aligned:	cmp.ne	p6, p0 = r0, r0		// clear p6	mov     ar.ec = MEMLAT + 1 ;;	// set EC.l3:(p[0])		ld8	r[0] = [src], 8(p[0])		ld8	q[0] = [dest], 8(p[MEMLAT])	cmp.ne	p6, p0 = r[MEMLAT], q[MEMLAT](p6)		br.cond.spnt .l3exit		br.ctop.dptk .l3 ;;.cmpfew:	cmp.eq	p6, p0 = len, r0	// is len == 0 ?	adds	len = -1, len		// --len;(p6)	br.cond.spnt	.restore_and_exit ;;	mov	ar.lc = len.l4:	ld1	value1 = [src], 1	ld1	value2 = [dest], 1	;;	cmp.ne	p6, p0 = value1, value2(p6)	br.cond.spnt	.done	br.cloop.dptk	.l4 ;;.done:(p6)	sub	ret0 = value2, value1	// don't execute it if falling thru.restore_and_exit:	mov     pr = saved_pr, -1    	// restore the predicate registers	mov 	ar.lc = saved_lc	// restore the loop counter	br.ret.sptk.many b0END(memcmp)weak_alias (memcmp, bcmp)libc_hidden_def (memcmp)
 |