| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* __ieee754_acosh(x) * Method : *	Based on *		acosh(x) = log [ x + sqrt(x*x-1) ] *	we have *		acosh(x) := log(x)+ln2,	if x is large; else *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. * * Special cases: *	acosh(x) is NaN with signal if x<1. *	acosh(NaN) is NaN without signal. */#include "math.h"#include "math_private.h"static const doubleone	= 1.0,ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */double attribute_hidden __ieee754_acosh(double x){	double t;	int32_t hx;	u_int32_t lx;	EXTRACT_WORDS(hx,lx,x);	if(hx<0x3ff00000) {		/* x < 1 */	    return (x-x)/(x-x);	} else if(hx >=0x41b00000) {	/* x > 2**28 */	    if(hx >=0x7ff00000) {	/* x is inf of NaN */	        return x+x;	    } else		return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */	} else if(((hx-0x3ff00000)|lx)==0) {	    return 0.0;			/* acosh(1) = 0 */	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */	    t=x*x;	    return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));	} else {			/* 1<x<2 */	    t = x-one;	    return log1p(t+sqrt(2.0*t+t*t));	}}/* * wrapper acosh(x) */#ifndef _IEEE_LIBMdouble acosh(double x){	double z = __ieee754_acosh(x);	if (_LIB_VERSION == _IEEE_ || isnan(x))		return z;	if (x < 1.0)		return __kernel_standard(x, x, 29); /* acosh(x<1) */	return z;}#elsestrong_alias(__ieee754_acosh, acosh)#endiflibm_hidden_def(acosh)
 |