123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- /* Prototype declarations for math functions; helper file for <math.h>.
- Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If not,
- write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
- /* NOTE: Because of the special way this file is used by <math.h>, this
- file must NOT be protected from multiple inclusion as header files
- usually are.
- This file provides prototype declarations for the math functions.
- Most functions are declared using the macro:
- __MATHCALL (NAME,[_r], (ARGS...));
- This means there is a function `NAME' returning `double' and a function
- `NAMEf' returning `float'. Each place `_Mdouble_' appears in the
- prototype, that is actually `double' in the prototype for `NAME' and
- `float' in the prototype for `NAMEf'. Reentrant variant functions are
- called `NAME_r' and `NAMEf_r'.
- Functions returning other types like `int' are declared using the macro:
- __MATHDECL (TYPE, NAME,[_r], (ARGS...));
- This is just like __MATHCALL but for a function returning `TYPE'
- instead of `_Mdouble_'. In all of these cases, there is still
- both a `NAME' and a `NAMEf' that takes `float' arguments.
- Note that there must be no whitespace before the argument passed for
- NAME, to make token pasting work with -traditional. */
- #ifndef _MATH_H
- #error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
- #endif
- /* Trigonometric functions. */
- /* Arc cosine of X. */
- __MATHCALL (acos,, (_Mdouble_ __x));
- /* Arc sine of X. */
- __MATHCALL (asin,, (_Mdouble_ __x));
- /* Arc tangent of X. */
- __MATHCALL (atan,, (_Mdouble_ __x));
- /* Arc tangent of Y/X. */
- __MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
- /* Cosine of X. */
- __MATHCALL (cos,, (_Mdouble_ __x));
- /* Sine of X. */
- __MATHCALL (sin,, (_Mdouble_ __x));
- /* Tangent of X. */
- __MATHCALL (tan,, (_Mdouble_ __x));
- #ifdef __USE_GNU
- /* Cosine and sine of X. */
- __MATHDECL (void,sincos,,
- (_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));
- #endif
- /* Hyperbolic functions. */
- /* Hyperbolic cosine of X. */
- __MATHCALL (cosh,, (_Mdouble_ __x));
- /* Hyperbolic sine of X. */
- __MATHCALL (sinh,, (_Mdouble_ __x));
- /* Hyperbolic tangent of X. */
- __MATHCALL (tanh,, (_Mdouble_ __x));
- #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
- /* Hyperbolic arc cosine of X. */
- __MATHCALL (acosh,, (_Mdouble_ __x));
- /* Hyperbolic arc sine of X. */
- __MATHCALL (asinh,, (_Mdouble_ __x));
- /* Hyperbolic arc tangent of X. */
- __MATHCALL (atanh,, (_Mdouble_ __x));
- #endif
- /* Exponential and logarithmic functions. */
- /* Exponential function of X. */
- __MATHCALL (exp,, (_Mdouble_ __x));
- #ifdef __USE_GNU
- /* A function missing in all standards: compute exponent to base ten. */
- __MATHCALL (exp10,, (_Mdouble_ __x));
- /* Another name occasionally used. */
- __MATHCALL (pow10,, (_Mdouble_ __x));
- #endif
- /* Break VALUE into a normalized fraction and an integral power of 2. */
- __MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));
- /* X times (two to the EXP power). */
- __MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));
- /* Natural logarithm of X. */
- __MATHCALL (log,, (_Mdouble_ __x));
- /* Base-ten logarithm of X. */
- __MATHCALL (log10,, (_Mdouble_ __x));
- /* Break VALUE into integral and fractional parts. */
- __MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr));
- #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
- /* Return exp(X) - 1. */
- __MATHCALL (expm1,, (_Mdouble_ __x));
- /* Return log(1 + X). */
- __MATHCALL (log1p,, (_Mdouble_ __x));
- /* Return the base 2 signed integral exponent of X. */
- __MATHCALL (logb,, (_Mdouble_ __x));
- #endif
- #ifdef __USE_ISOC9X
- /* Compute base-2 exponential of X. */
- __MATHCALL (exp2,, (_Mdouble_ __x));
- /* Compute base-2 logarithm of X. */
- __MATHCALL (log2,, (_Mdouble_ __x));
- #endif
- /* Power functions. */
- /* Return X to the Y power. */
- __MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y));
- /* Return the square root of X. */
- __MATHCALL (sqrt,, (_Mdouble_ __x));
- #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X
- /* Return `sqrt(X*X + Y*Y)'. */
- __MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
- #endif
- #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
- /* Return the cube root of X. */
- __MATHCALL (cbrt,, (_Mdouble_ __x));
- #endif
- /* Nearest integer, absolute value, and remainder functions. */
- /* Smallest integral value not less than X. */
- __MATHCALL (ceil,, (_Mdouble_ __x));
- /* Absolute value of X. */
- __MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));
- /* Largest integer not greater than X. */
- __MATHCALL (floor,, (_Mdouble_ __x));
- /* Floating-point modulo remainder of X/Y. */
- __MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
- /* Return 0 if VALUE is finite or NaN, +1 if it
- is +Infinity, -1 if it is -Infinity. */
- __MATHDECL_1 (int,__isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
- /* Return nonzero if VALUE is finite and not NaN. */
- __MATHDECL_1 (int,__finite,, (_Mdouble_ __value)) __attribute__ ((__const__));
- #ifdef __USE_MISC
- /* Return 0 if VALUE is finite or NaN, +1 if it
- is +Infinity, -1 if it is -Infinity. */
- __MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
- /* Return nonzero if VALUE is finite and not NaN. */
- __MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__));
- /* Deal with an infinite or NaN result.
- If ERROR is ERANGE, result is +Inf;
- if ERROR is - ERANGE, result is -Inf;
- otherwise result is NaN.
- This will set `errno' to either ERANGE or EDOM,
- and may return an infinity or NaN, or may do something else. */
- __MATHCALLX (infnan,, (int __error), (__const__));
- /* Return the remainder of X/Y. */
- __MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
- /* Return the fractional part of X after dividing out `ilogb (X)'. */
- __MATHCALL (significand,, (_Mdouble_ __x));
- #endif /* Use misc. */
- #if defined __USE_MISC || defined __USE_ISOC9X
- /* Return X with its signed changed to Y's. */
- __MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
- #endif
- #ifdef __USE_ISOC9X
- /* Return representation of NaN for double type. */
- __MATHCALLX (nan,, (__const char *__tagb), (__const__));
- #endif
- /* Return nonzero if VALUE is not a number. */
- __MATHDECL_1 (int,__isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));
- #if defined __USE_MISC || defined __USE_XOPEN
- /* Return nonzero if VALUE is not a number. */
- __MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));
- /* Bessel functions. */
- __MATHCALL (j0,, (_Mdouble_));
- __MATHCALL (j1,, (_Mdouble_));
- __MATHCALL (jn,, (int, _Mdouble_));
- __MATHCALL (y0,, (_Mdouble_));
- __MATHCALL (y1,, (_Mdouble_));
- __MATHCALL (yn,, (int, _Mdouble_));
- #endif
- #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X
- /* Error and gamma functions. */
- __MATHCALL (erf,, (_Mdouble_));
- __MATHCALL (erfc,, (_Mdouble_));
- __MATHCALL (lgamma,, (_Mdouble_));
- __MATHCALL (tgamma,, (_Mdouble_));
- #endif
- #if defined __USE_MISC || defined __USE_XOPEN
- /* Obsolete alias for `lgamma'. */
- __MATHCALL (gamma,, (_Mdouble_));
- #endif
- #ifdef __USE_MISC
- /* Reentrant version of lgamma. This function uses the global variable
- `signgam'. The reentrant version instead takes a pointer and stores
- the value through it. */
- __MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));
- #endif
- #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
- /* Return the integer nearest X in the direction of the
- prevailing rounding mode. */
- __MATHCALL (rint,, (_Mdouble_ __x));
- /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
- __MATHCALLX (nextafter,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
- # ifdef __USE_ISOC9X
- __MATHCALLX (nexttoward,, (_Mdouble_ __x, long double __y), (__const__));
- # endif
- /* Return the remainder of integer divison X / Y with infinite precision. */
- __MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
- # if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
- /* Return X times (2 to the Nth power). */
- __MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
- # endif
- /* Return X times (2 to the Nth power). */
- __MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
- /* Return the binary exponent of X, which must be nonzero. */
- __MATHDECL (int,ilogb,, (_Mdouble_ __x));
- #endif
- #ifdef __USE_ISOC9X
- /* Return X times (2 to the Nth power). */
- __MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));
- /* Round X to integral value in floating-point format using current
- rounding direction, but do not raise inexact exception. */
- __MATHCALL (nearbyint,, (_Mdouble_ __x));
- /* Round X to nearest integral value, rounding halfway cases away from
- zero. */
- __MATHCALL (round,, (_Mdouble_ __x));
- /* Round X to the integral value in floating-point format nearest but
- not larger in magnitude. */
- __MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));
- /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
- and magnitude congruent `mod 2^n' to the magnitude of the integral
- quotient x/y, with n >= 3. */
- __MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));
- /* Conversion functions. */
- /* Round X to nearest integral value according to current rounding
- direction. */
- __MATHDECL (long int,lrint,, (_Mdouble_ __x));
- __MATHDECL (long long int,llrint,, (_Mdouble_ __x));
- /* Round X to nearest integral value, rounding halfway cases away from
- zero. */
- __MATHDECL (long int,lround,, (_Mdouble_ __x));
- __MATHDECL (long long int,llround,, (_Mdouble_ __x));
- /* Return positive difference between X and Y. */
- __MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));
- /* Return maximum numeric value from X and Y. */
- __MATHCALL (fmax,, (_Mdouble_ __x, _Mdouble_ __y));
- /* Return minimum numeric value from X and Y. */
- __MATHCALL (fmin,, (_Mdouble_ __x, _Mdouble_ __y));
- /* Classify given number. */
- __MATHDECL_1 (int, __fpclassify,, (_Mdouble_ __value))
- __attribute__ ((__const__));
- /* Test for negative number. */
- __MATHDECL_1 (int, __signbit,, (_Mdouble_ __value))
- __attribute__ ((__const__));
- /* Multiply-add function computed as a ternary operation. */
- __MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));
- #endif /* Use ISO C 9X. */
|