123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 |
- /* This file is generated from divrem.m4; DO NOT EDIT! */
- /*
- * Division and remainder, from Appendix E of the Sparc Version 8
- * Architecture Manual, with fixes from Gordon Irlam.
- */
- /*
- * Input: dividend and divisor in %o0 and %o1 respectively.
- *
- * m4 parameters:
- * .urem name of function to generate
- * rem rem=div => %o0 / %o1; rem=rem => %o0 % %o1
- * false false=true => signed; false=false => unsigned
- *
- * Algorithm parameters:
- * N how many bits per iteration we try to get (4)
- * WORDSIZE total number of bits (32)
- *
- * Derived constants:
- * TOPBITS number of bits in the top decade of a number
- *
- * Important variables:
- * Q the partial quotient under development (initially 0)
- * R the remainder so far, initially the dividend
- * ITER number of main division loop iterations required;
- * equal to ceil(log2(quotient) / N). Note that this
- * is the log base (2^N) of the quotient.
- * V the current comparand, initially divisor*2^(ITER*N-1)
- *
- * Cost:
- * Current estimate for non-large dividend is
- * ceil(log2(quotient) / N) * (10 + 7N/2) + C
- * A large dividend is one greater than 2^(31-TOPBITS) and takes a
- * different path, as the upper bits of the quotient must be developed
- * one bit at a time.
- */
- ENTRY(.urem)
- ! Ready to divide. Compute size of quotient; scale comparand.
- orcc %o1, %g0, %o5
- bne 1f
- mov %o0, %o3
- ! Divide by zero trap. If it returns, return 0 (about as
- ! wrong as possible, but that is what SunOS does...).
- ta ST_DIV0
- retl
- clr %o0
- 1:
- cmp %o3, %o5 ! if %o1 exceeds %o0, done
- blu LOC(got_result) ! (and algorithm fails otherwise)
- clr %o2
- sethi %hi(1 << (32 - 4 - 1)), %g1
- cmp %o3, %g1
- blu LOC(not_really_big)
- clr %o4
- ! Here the dividend is >= 2**(31-N) or so. We must be careful here,
- ! as our usual N-at-a-shot divide step will cause overflow and havoc.
- ! The number of bits in the result here is N*ITER+SC, where SC <= N.
- ! Compute ITER in an unorthodox manner: know we need to shift V into
- ! the top decade: so do not even bother to compare to R.
- 1:
- cmp %o5, %g1
- bgeu 3f
- mov 1, %g2
- sll %o5, 4, %o5
- b 1b
- add %o4, 1, %o4
- ! Now compute %g2.
- 2: addcc %o5, %o5, %o5
- bcc LOC(not_too_big)
- add %g2, 1, %g2
- ! We get here if the %o1 overflowed while shifting.
- ! This means that %o3 has the high-order bit set.
- ! Restore %o5 and subtract from %o3.
- sll %g1, 4, %g1 ! high order bit
- srl %o5, 1, %o5 ! rest of %o5
- add %o5, %g1, %o5
- b LOC(do_single_div)
- sub %g2, 1, %g2
- LOC(not_too_big):
- 3: cmp %o5, %o3
- blu 2b
- nop
- be LOC(do_single_div)
- nop
- /* NB: these are commented out in the V8-Sparc manual as well */
- /* (I do not understand this) */
- ! %o5 > %o3: went too far: back up 1 step
- ! srl %o5, 1, %o5
- ! dec %g2
- ! do single-bit divide steps
- !
- ! We have to be careful here. We know that %o3 >= %o5, so we can do the
- ! first divide step without thinking. BUT, the others are conditional,
- ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
- ! order bit set in the first step, just falling into the regular
- ! division loop will mess up the first time around.
- ! So we unroll slightly...
- LOC(do_single_div):
- subcc %g2, 1, %g2
- bl LOC(end_regular_divide)
- nop
- sub %o3, %o5, %o3
- mov 1, %o2
- b LOC(end_single_divloop)
- nop
- LOC(single_divloop):
- sll %o2, 1, %o2
- bl 1f
- srl %o5, 1, %o5
- ! %o3 >= 0
- sub %o3, %o5, %o3
- b 2f
- add %o2, 1, %o2
- 1: ! %o3 < 0
- add %o3, %o5, %o3
- sub %o2, 1, %o2
- 2:
- LOC(end_single_divloop):
- subcc %g2, 1, %g2
- bge LOC(single_divloop)
- tst %o3
- b,a LOC(end_regular_divide)
- LOC(not_really_big):
- 1:
- sll %o5, 4, %o5
- cmp %o5, %o3
- bleu 1b
- addcc %o4, 1, %o4
- be LOC(got_result)
- sub %o4, 1, %o4
- tst %o3 ! set up for initial iteration
- LOC(divloop):
- sll %o2, 4, %o2
- ! depth 1, accumulated bits 0
- bl LOC(1.16)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 2, accumulated bits 1
- bl LOC(2.17)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 3, accumulated bits 3
- bl LOC(3.19)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 4, accumulated bits 7
- bl LOC(4.23)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (7*2+1), %o2
-
- LOC(4.23):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (7*2-1), %o2
-
-
- LOC(3.19):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 4, accumulated bits 5
- bl LOC(4.21)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (5*2+1), %o2
-
- LOC(4.21):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (5*2-1), %o2
-
-
-
- LOC(2.17):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 3, accumulated bits 1
- bl LOC(3.17)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 4, accumulated bits 3
- bl LOC(4.19)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (3*2+1), %o2
-
- LOC(4.19):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (3*2-1), %o2
-
-
- LOC(3.17):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 4, accumulated bits 1
- bl LOC(4.17)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (1*2+1), %o2
-
- LOC(4.17):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (1*2-1), %o2
-
-
-
-
- LOC(1.16):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 2, accumulated bits -1
- bl LOC(2.15)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 3, accumulated bits -1
- bl LOC(3.15)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 4, accumulated bits -1
- bl LOC(4.15)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (-1*2+1), %o2
-
- LOC(4.15):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (-1*2-1), %o2
-
-
- LOC(3.15):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 4, accumulated bits -3
- bl LOC(4.13)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (-3*2+1), %o2
-
- LOC(4.13):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (-3*2-1), %o2
-
-
-
- LOC(2.15):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 3, accumulated bits -3
- bl LOC(3.13)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- ! depth 4, accumulated bits -5
- bl LOC(4.11)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (-5*2+1), %o2
-
- LOC(4.11):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (-5*2-1), %o2
-
-
- LOC(3.13):
- ! remainder is negative
- addcc %o3,%o5,%o3
- ! depth 4, accumulated bits -7
- bl LOC(4.9)
- srl %o5,1,%o5
- ! remainder is positive
- subcc %o3,%o5,%o3
- b 9f
- add %o2, (-7*2+1), %o2
-
- LOC(4.9):
- ! remainder is negative
- addcc %o3,%o5,%o3
- b 9f
- add %o2, (-7*2-1), %o2
-
-
-
-
- 9:
- LOC(end_regular_divide):
- subcc %o4, 1, %o4
- bge LOC(divloop)
- tst %o3
- bl,a LOC(got_result)
- ! non-restoring fixup here (one instruction only!)
- add %o3, %o1, %o3
- LOC(got_result):
- retl
- mov %o3, %o0
- END(.urem)
|