1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550 |
- /* paranoia.c arithmetic tester
- *
- * This is an implementation of the PARANOIA program. It substitutes
- * subroutine calls for ALL floating point arithmetic operations.
- * This permits you to substitute your own experimental versions of
- * arithmetic routines. It also defeats compiler optimizations,
- * so for native arithmetic you can be pretty sure you are testing
- * the arithmetic and not the compiler.
- *
- * This version of PARANOIA omits the display of division by zero.
- * It also omits the test for extra precise subexpressions, since
- * they cannot occur in this context. Otherwise it includes all the
- * tests of the 27 Jan 86 distribution, plus a few additional tests.
- * Commentary has been reduced to a minimum in order to make the program
- * smaller.
- *
- * The original PARANOIA program, written by W. Kahan, C version
- * by Thos Sumner and David Gay, can be downloaded free from the
- * Internet NETLIB. An MSDOS disk can be obtained for $15 from:
- * Richard Karpinski
- * 6521 Raymond Street
- * Oakland, CA 94609
- *
- * Steve Moshier, 28 Oct 88
- * last rev: 23 May 92
- */
- #define DEBUG 0
- /* To use the native arithmetic of the computer, define NATIVE
- * to be 1. To use your own supplied arithmetic routines, NATIVE is 0.
- */
- #define NATIVE 0
- /* gcc real.c interface */
- #define L128DOUBLE 0
- #include <stdio.h>
- /* Data structure of floating point number. If NATIVE was
- * selected above, you can define LDOUBLE 1 to test 80-bit long double
- * precision or define it 0 to test 64-bit double precision.
- */
- #define LDOUBLE 0
- #if NATIVE
- #define NE 1
- #if LDOUBLE
- #define FSIZE long double
- #define FLOAT(x) FSIZE x[NE]
- static FSIZE eone[NE] = {1.0L}; /* The constant 1.0 */
- #define ZSQRT sqrtl
- #define ZLOG logl
- #define ZFLOOR floorl
- #define ZPOW powl
- long double sqrtl(), logl(), floorl(), powl();
- #define FSETUP einit
- #else /* not LDOUBLE */
- #define FSIZE double
- #define FLOAT(x) FSIZE x[NE]
- static FSIZE eone[NE] = {1.0}; /* The constant 1.0 */
- #define ZSQRT sqrt
- #define ZLOG log
- #define ZFLOOR floor
- #define ZPOW pow
- double sqrt(), log(), floor(), pow();
- /* Coprocessor initialization,
- * defeat underflow trap or what have you.
- * This is required mainly on i386 and 68K processors.
- */
- #define FSETUP dprec
- #endif /* double, not LDOUBLE */
- #else /* not NATIVE */
- /* Setup for extended double type.
- * Put NE = 10 for real.c operating with TFmode support (16-byte reals)
- * Put NE = 6 for real.c operating with XFmode support (10- or 12-byte reals)
- * The value of NE must agree with that in ehead.h, if ieee.c is used.
- */
- #define NE 6
- #define FSIZE unsigned short
- #define FLOAT(x) unsigned short x[NE]
- extern unsigned short eone[];
- #define FSETUP einit
- /* default for FSETUP */
- /*
- einit()
- {}
- */
- error(s)
- char *s;
- {
- printf( "error: %s\n", s );
- }
- #endif /* not NATIVE */
- #if L128DOUBLE
- /* real.c interface */
- #undef FSETUP
- #define FSETUP efsetup
- FLOAT(enone);
- #define ONE enone
- /* Use emov to convert from widest type to widest type, ... */
- /*
- #define ENTOE emov
- #define ETOEN emov
- */
- /* ... else choose e24toe, e53toe, etc. */
- #define ENTOE e64toe
- #define ETOEN etoe64
- #define NNBITS 64
- #define NIBITS ((NE-1)*16)
- extern int rndprc;
- efsetup()
- {
- rndprc = NNBITS;
- ETOEN(eone, enone);
- }
- add(a,b,c)
- FLOAT(a);
- FLOAT(b);
- FLOAT(c);
- {
- unsigned short aa[10], bb[10], cc[10];
- ENTOE(a,aa);
- ENTOE(b,bb);
- eadd(aa,bb,cc);
- ETOEN(cc,c);
- }
- sub(a,b,c)
- FLOAT(a);
- FLOAT(b);
- FLOAT(c);
- {
- unsigned short aa[10], bb[10], cc[10];
- ENTOE(a,aa);
- ENTOE(b,bb);
- esub(aa,bb,cc);
- ETOEN(cc,c);
- }
- mul(a,b,c)
- FLOAT(a);
- FLOAT(b);
- FLOAT(c);
- {
- unsigned short aa[10], bb[10], cc[10];
- ENTOE(a,aa);
- ENTOE(b,bb);
- emul(aa,bb,cc);
- ETOEN(cc,c);
- }
- div(a,b,c)
- FLOAT(a);
- FLOAT(b);
- FLOAT(c);
- {
- unsigned short aa[10], bb[10], cc[10];
- ENTOE(a,aa);
- ENTOE(b,bb);
- ediv(aa,bb,cc);
- ETOEN(cc,c);
- }
- int cmp(a,b)
- FLOAT(a);
- FLOAT(b);
- {
- unsigned short aa[10], bb[10];
- int c;
- int ecmp();
- ENTOE(a,aa);
- ENTOE(b,bb);
- c = ecmp(aa,bb);
- return(c);
- }
- mov(a,b)
- FLOAT(a);
- FLOAT(b);
- {
- int i;
- for( i=0; i<NE; i++ )
- b[i] = a[i];
- }
- neg(a)
- FLOAT(a);
- {
- unsigned short aa[10];
- ENTOE(a,aa);
- eneg(aa);
- ETOEN(aa,a);
- }
- clear(a)
- FLOAT(a);
- {
- int i;
- for( i=0; i<NE; i++ )
- a[i] = 0;
- }
- FABS(a)
- FLOAT(a);
- {
- unsigned short aa[10];
- ENTOE(a,aa);
- eabs(aa);
- ETOEN(aa,a);
- }
- FLOOR(a,b)
- FLOAT(a);
- FLOAT(b);
- {
- unsigned short aa[10], bb[10];
- ENTOE(a,aa);
- efloor(aa,bb);
- ETOEN(bb,b);
- }
- LOG(a,b)
- FLOAT(a);
- FLOAT(b);
- {
- unsigned short aa[10], bb[10];
- int rndsav;
- ENTOE(a,aa);
- rndsav = rndprc;
- rndprc = NIBITS;
- elog(aa,bb);
- rndprc = rndsav;
- ETOEN(bb,b);
- }
- POW(a,b,c)
- FLOAT(a);
- FLOAT(b);
- FLOAT(c);
- {
- unsigned short aa[10], bb[10], cc[10];
- int rndsav;
- ENTOE(a,aa);
- ENTOE(b,bb);
- rndsav = rndprc;
- rndprc = NIBITS;
- epow(aa,bb,cc);
- rndprc = rndsav;
- ETOEN(cc,c);
- }
- SQRT(a,b)
- FLOAT(a);
- FLOAT(b);
- {
- unsigned short aa[10], bb[10];
- ENTOE(a,aa);
- esqrt(aa,bb);
- ETOEN(bb,b);
- }
- FTOL(x,ip,f)
- FLOAT(x);
- long *ip;
- FLOAT(f);
- {
- unsigned short xx[10], ff[10];
- ENTOE(x,xx);
- eifrac(xx,ip,ff);
- ETOEN(ff,f);
- }
- LTOF(ip,x)
- long *ip;
- FLOAT(x);
- {
- unsigned short xx[10];
- ltoe(ip,xx);
- ETOEN(xx,x);
- }
- TOASC(a,b,c)
- FLOAT(a);
- int b;
- char *c;
- {
- unsigned short xx[10];
- ENTOE(a,xx);
- etoasc(xx,b,c);
- }
- #else /* not L128DOUBLE */
- #define ONE eone
- /* Note all arguments of operation subroutines are pointers. */
- /* c = b + a */
- #define add(a,b,c) eadd(a,b,c)
- /* c = b - a */
- #define sub(a,b,c) esub(a,b,c)
- /* c = b * a */
- #define mul(a,b,c) emul(a,b,c)
- /* c = b / a */
- #define div(a,b,c) ediv(a,b,c)
- /* 1 if a>b, 0 if a==b, -1 if a<b */
- #define cmp(a,b) ecmp(a,b)
- /* b = a */
- #define mov(a,b) emov(a,b)
- /* a = -a */
- #define neg(a) eneg(a)
- /* a = 0 */
- #define clear(a) eclear(a)
- #define FABS(x) eabs(x)
- #define FLOOR(x,y) efloor(x,y)
- #define LOG(x,y) elog(x,y)
- #define POW(x,y,z) epow(x,y,z)
- #define SQRT(x,y) esqrt(x,y)
- /* x = &FLOAT input, i = &long integer part, f = &FLOAT fractional part */
- #define FTOL(x,i,f) eifrac(x,i,f)
- /* i = &long integer input, x = &FLOAT output */
- #define LTOF(i,x) ltoe(i,x)
- /* Convert FLOAT a to decimal ASCII string with b digits */
- #define TOASC(a,b,c) etoasc(a,b,c)
- #endif /* not L128DOUBLE */
- /* The following subroutines are implementations of the above
- * named functions, using the native or default arithmetic.
- */
- #if NATIVE
- eadd(a,b,c)
- FSIZE *a, *b, *c;
- {
- *c = *b + *a;
- }
- esub(a,b,c)
- FSIZE *a, *b, *c;
- {
- *c = *b - *a;
- }
- emul(a,b,c)
- FSIZE *a, *b, *c;
- {
- *c = (*b) * (*a);
- }
- ediv(a,b,c)
- FSIZE *a, *b, *c;
- {
- *c = (*b) / (*a);
- }
- /* Important note: comparison can be done by subracting
- * or by a compare instruction that may or may not be
- * equivalent to subtracting.
- */
- ecmp(a,b)
- FSIZE *a, *b;
- {
- if( (*a) > (*b) )
- return( 1 );
- if( (*a) < (*b) )
- return( -1 );
- if( (*a) != (*b) )
- goto cmpf;
- if( (*a) == (*b) )
- return( 0 );
- cmpf:
- printf( "Compare fails\n" );
- return(0);
- }
- emov( a, b )
- FSIZE *a, *b;
- {
- *b = *a;
- }
- eneg( a )
- FSIZE *a;
- {
- *a = -(*a);
- }
- eclear(a)
- FSIZE *a;
- {
- *a = 0.0;
- }
- eabs(x)
- FSIZE *x;
- {
- if( (*x) < 0.0 )
- *x = -(*x);
- }
- efloor(x,y)
- FSIZE *x, *y;
- {
- *y = (FSIZE )ZFLOOR( *x );
- }
- elog(x,y)
- FSIZE *x, *y;
- {
- *y = (FSIZE )ZLOG( *x );
- }
- epow(x,y,z)
- FSIZE *x, *y, *z;
- {
- *z = (FSIZE )ZPOW( *x, *y );
- }
- esqrt(x,y)
- FSIZE *x, *y;
- {
- *y = (FSIZE )ZSQRT( *x );
- }
- eifrac(x,i,f)
- FSIZE *x;
- long *i;
- FSIZE *f;
- {
- FSIZE y;
- y = (FSIZE )ZFLOOR( *x );
- if( y < 0.0 )
- {
- *f = y - *x;
- *i = -y;
- }
- else
- {
- *f = *x - y;
- *i = y;
- }
- }
- ltoe(i,x)
- long *i;
- FSIZE *x;
- {
- *x = *i;
- }
- etoasc(a,str,n)
- FSIZE *a;
- char *str;
- int n;
- {
- double x;
- x = (double )(*a);
- sprintf( str, " %.17e ", x );
- }
- /* default for FSETUP */
- einit()
- {}
- #endif /* NATIVE */
- FLOAT(Radix);
- FLOAT(BInvrse);
- FLOAT(RadixD2);
- FLOAT(BMinusU2);
- /*Small floating point constants.*/
- FLOAT(Zero);
- FLOAT(Half);
- FLOAT(One);
- FLOAT(Two);
- FLOAT(Three);
- FLOAT(Four);
- FLOAT(Five);
- FLOAT(Six);
- FLOAT(Eight);
- FLOAT(Nine);
- FLOAT(Ten);
- FLOAT(TwentySeven);
- FLOAT(ThirtyTwo);
- FLOAT(TwoForty);
- FLOAT(MinusOne );
- FLOAT(OneAndHalf);
- /*Integer constants*/
- int NoTrials = 20; /*Number of tests for commutativity. */
- #define False 0
- #define True 1
- /* Definitions for declared types
- Guard == (Yes, No);
- Rounding == (Chopped, Rounded, Other);
- Message == packed array [1..40] of char;
- Class == (Flaw, Defect, Serious, Failure);
- */
- #define Yes 1
- #define No 0
- #define Chopped 2
- #define Rounded 1
- #define Other 0
- #define Flaw 3
- #define Defect 2
- #define Serious 1
- #define Failure 0
- typedef int Guard, Rounding, Class;
- typedef char Message;
- /* Declarations of Variables */
- FLOAT(AInvrse);
- FLOAT(A1);
- FLOAT(C);
- FLOAT(CInvrse);
- FLOAT(D);
- FLOAT(FourD);
- FLOAT(E0);
- FLOAT(E1);
- FLOAT(Exp2);
- FLOAT(E3);
- FLOAT(MinSqEr);
- FLOAT(SqEr);
- FLOAT(MaxSqEr);
- FLOAT(E9);
- FLOAT(Third);
- FLOAT(F6);
- FLOAT(F9);
- FLOAT(H);
- FLOAT(HInvrse);
- FLOAT(StickyBit);
- FLOAT(J);
- FLOAT(MyZero);
- FLOAT(Precision);
- FLOAT(Q);
- FLOAT(Q9);
- FLOAT(R);
- FLOAT(Random9);
- FLOAT(T);
- FLOAT(Underflow);
- FLOAT(S);
- FLOAT(OneUlp);
- FLOAT(UfThold);
- FLOAT(U1);
- FLOAT(U2);
- FLOAT(V);
- FLOAT(V0);
- FLOAT(V9);
- FLOAT(W);
- FLOAT(X);
- FLOAT(X1);
- FLOAT(X2);
- FLOAT(X8);
- FLOAT(Random1);
- FLOAT(Y);
- FLOAT(YY1);
- FLOAT(Y2);
- FLOAT(Random2);
- FLOAT(Z);
- FLOAT(PseudoZero);
- FLOAT(Z1);
- FLOAT(Z2);
- FLOAT(Z9);
- static FLOAT(t);
- FLOAT(t2);
- FLOAT(Sqarg);
- int ErrCnt[4];
- int fpecount;
- int Milestone;
- int PageNo;
- int I, M, N, N1, stkflg;
- Guard GMult, GDiv, GAddSub;
- Rounding RMult, RDiv, RAddSub, RSqrt;
- int Break, Done, NotMonot, Monot, Anomaly, IEEE;
- int SqRWrng, UfNGrad;
- int k, k2;
- int Indx;
- char ch[8];
- long lngint, lng2; /* intermediate for conversion between int and FLOAT */
- /* Computed constants. */
- /*U1 gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */
- /*U2 gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */
- show( x )
- short x[];
- {
- int i;
- char s[80];
- /* Number of 16-bit groups to display */
- #if NATIVE
- #if LDOUBLE
- #define NPRT (sizeof( long double )/2)
- #else
- #define NPRT (sizeof( double )/2)
- #endif
- #else
- #define NPRT NE
- #endif
- TOASC( x, s, 70 );
- printf( "%s\n", s );
- for( i=0; i<NPRT; i++ )
- printf( "%04x ", x[i] & 0xffff );
- printf( "\n" );
- }
- /* define NOSIGNAL */
- #ifndef NOSIGNAL
- #include <signal.h>
- #endif
- #include <setjmp.h>
- jmp_buf ovfl_buf;
- /*typedef int (*Sig_type)();*/
- typedef void (*Sig_type)();
- Sig_type sigsave;
- /* Floating point exception receiver */
- void sigfpe()
- {
- fpecount++;
- printf( "\n* * * FLOATING-POINT ERROR * * *\n" );
- /* reinitialize the floating point unit */
- FSETUP();
- fflush(stdout);
- if( sigsave )
- {
- #ifndef NOSIGNAL
- signal( SIGFPE, sigsave );
- #endif
- sigsave = 0;
- longjmp( ovfl_buf, 1 );
- }
- abort();
- }
- main()
- {
- /* Do coprocessor or other initializations */
- FSETUP();
- printf(
- "This version of paranoia omits test for extra precise subexpressions\n" );
- printf( "and includes a few additional tests.\n" );
- clear(Zero);
- printf( "0 = " );
- show( Zero );
- mov( ONE, One);
- printf( "1 = " );
- show( One );
- add( One, One, Two );
- printf( "1+1 = " );
- show( Two );
- add( Two, One, Three );
- add( Three, One, Four );
- add( Four, One, Five );
- add( Five, One, Six );
- add( Four, Four, Eight );
- mul( Three, Three, Nine );
- add( Nine, One, Ten );
- mul( Nine, Three, TwentySeven );
- mul( Four, Eight, ThirtyTwo );
- mul( Four, Five, t );
- mul( t, Three, t );
- mul( t, Four, TwoForty );
- mov( One, MinusOne );
- neg( MinusOne );
- div( Two, One, Half );
- add( One, Half, OneAndHalf );
- ErrCnt[Failure] = 0;
- ErrCnt[Serious] = 0;
- ErrCnt[Defect] = 0;
- ErrCnt[Flaw] = 0;
- PageNo = 1;
- #ifndef NOSIGNAL
- signal( SIGFPE, sigfpe );
- #endif
- printf("Program is now RUNNING tests on small integers:\n");
- add( Zero, Zero, t );
- if( cmp( t, Zero ) != 0)
- {
- printf( "0+0 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- sub( One, One, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "1-1 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- if( cmp( One, Zero ) <= 0 )
- {
- printf( "1 <= 0\n" );
- ErrCnt[Failure] += 1;
- }
- add( One, One, t );
- if( cmp( t, Two ) != 0 )
- {
- printf( "1+1 != 2\n" );
- ErrCnt[Failure] += 1;
- }
- mov( Zero, Z );
- neg( Z );
- FLOOR( Z, t );
- if( cmp(t,Zero) != 0 )
- {
- ErrCnt[Serious] += 1;
- printf( "FLOOR(-0) should equal 0, is = " );
- show( t );
- }
- if( cmp(Z, Zero) != 0)
- {
- ErrCnt[Failure] += 1;
- printf("Comparison alleges that -0.0 is Non-zero!\n");
- }
- else
- {
- div( TwoForty, One, U1 ); /* U1 = 0.001 */
- mov( One, Radix );
- TstPtUf();
- }
- add( Two, One, t );
- if( cmp( t, Three ) != 0 )
- {
- printf( "2+1 != 3\n" );
- ErrCnt[Failure] += 1;
- }
- add( Three, One, t );
- if( cmp( t, Four ) != 0 )
- {
- printf( "3+1 != 4\n" );
- ErrCnt[Failure] += 1;
- }
- mov( Two, t );
- neg( t );
- mul( Two, t, t );
- add( Four, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "4+2*(-2) != 0\n" );
- ErrCnt[Failure] += 1;
- }
- sub( Three, Four, t );
- sub( One, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "4-3-1 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- sub( One, Zero, t );
- if( cmp( t, MinusOne ) != 0 )
- {
- printf( "-1 != 0-1\n" );
- ErrCnt[Failure] += 1;
- }
- add( One, MinusOne, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "1+(-1) != 0\n" );
- ErrCnt[Failure] += 1;
- }
- mov( One, t );
- FABS( t );
- add( MinusOne, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "-1+abs(1) != 0\n" );
- ErrCnt[Failure] += 1;
- }
- mul( MinusOne, MinusOne, t );
- add( MinusOne, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "-1+(-1)*(-1) != 0\n" );
- ErrCnt[Failure] += 1;
- }
- add( Half, MinusOne, t );
- add( Half, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "1/2 + (-1) + 1/2 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- Milestone = 10;
- mul( Three, Three, t );
- if( cmp( t, Nine ) != 0 )
- {
- printf( "3*3 != 9\n" );
- ErrCnt[Failure] += 1;
- }
- mul( Nine, Three, t );
- if( cmp( t, TwentySeven ) != 0 )
- {
- printf( "3*9 != 27\n" );
- ErrCnt[Failure] += 1;
- }
- add( Four, Four, t );
- if( cmp( t, Eight ) != 0 )
- {
- printf( "4+4 != 8\n" );
- ErrCnt[Failure] += 1;
- }
- mul( Eight, Four, t );
- if( cmp( t, ThirtyTwo ) != 0 )
- {
- printf( "8*4 != 32\n" );
- ErrCnt[Failure] += 1;
- }
- sub( TwentySeven, ThirtyTwo, t );
- sub( Four, t, t );
- sub( One, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "32-27-4-1 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- add( Four, One, t );
- if( cmp( t, Five ) != 0 )
- {
- printf( "4+1 != 5\n" );
- ErrCnt[Failure] += 1;
- }
- mul( Four, Five, t );
- mul( Three, t, t );
- mul( Four, t, t );
- if( cmp( t, TwoForty ) != 0 )
- {
- printf( "4*5*3*4 != 240\n" );
- ErrCnt[Failure] += 1;
- }
- div( Three, TwoForty, t );
- mul( Four, Four, t2 );
- mul( Five, t2, t2 );
- sub( t2, t2, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "240/3 - 4*4*5 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- div( Four, TwoForty, t );
- mul( Five, Three, t2 );
- mul( Four, t2, t2 );
- sub( t2, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "240/4 - 5*3*4 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- div( Five, TwoForty, t );
- mul( Four, Three, t2 );
- mul( Four, t2, t2 );
- sub( t2, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- printf( "240/5 - 4*3*4 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- if(ErrCnt[Failure] == 0)
- {
- printf("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n\n");
- }
- printf("Searching for Radix and Precision.\n");
- mov( One, W );
- do
- {
- add( W, W, W );
- add( W, One, Y );
- sub( W, Y, Z );
- sub( One, Z, Y );
- mov( Y, t );
- FABS(t);
- add( MinusOne, t, t );
- k = cmp( t, Zero );
- }
- while( k < 0 );
- /*.. now W is just big enough that |((W+1)-W)-1| >= 1 ...*/
- mov( Zero, Precision );
- mov( One, Y );
- do
- {
- add( W, Y, Radix );
- add( Y, Y, Y );
- sub( W, Radix, Radix );
- k = cmp( Radix, Zero );
- }
- while( k == 0);
- if( cmp(Radix, Two) < 0 )
- mov( One, Radix );
- printf("Radix = " );
- show( Radix );
- if( cmp(Radix, One) != 0)
- {
- mov( One, W );
- do
- {
- add( One, Precision, Precision );
- mul( W, Radix, W );
- add( W, One, Y );
- sub( W, Y, t );
- k = cmp( t, One );
- }
- while( k == 0 );
- }
- /* now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1 */
- div( W, One, U1 );
- mul( Radix, U1, U2 );
- printf( "Closest relative separation found is U 1 = " );
- show( U1 );
- printf( "Recalculating radix and precision." );
-
- /*save old values*/
- mov( Radix, E0 );
- mov( U1, E1 );
- mov( U2, E9 );
- mov( Precision, E3 );
-
- div( Three, Four, X );
- sub( One, X, Third );
- sub( Third, Half, F6 );
- add( F6, F6, X );
- sub( Third, X, X );
- FABS( X );
- if( cmp(X, U2) < 0 )
- mov( U2, X );
-
- /*... now X = (unknown no.) ulps of 1+...*/
- do
- {
- mov( X, U2 );
- /* Y = Half * U2 + ThirtyTwo * U2 * U2; */
- mul( ThirtyTwo, U2, t );
- mul( t, U2, t );
- mul( Half, U2, Y );
- add( t, Y, Y );
- add( One, Y, Y );
- sub( One, Y, X );
- k = cmp( U2, X );
- k2 = cmp( X, Zero );
- }
- while ( ! ((k <= 0) || (k2 <= 0)));
-
- /*... now U2 == 1 ulp of 1 + ... */
- div( Three, Two, X );
- sub( Half, X, F6 );
- add( F6, F6, Third );
- sub( Half, Third, X );
- add( F6, X, X );
- FABS( X );
- if( cmp(X, U1) < 0 )
- mov( U1, X );
-
- /*... now X == (unknown no.) ulps of 1 -... */
- do
- {
- mov( X, U1 );
- /* Y = Half * U1 + ThirtyTwo * U1 * U1;*/
- mul( ThirtyTwo, U1, t );
- mul( U1, t, t );
- mul( Half, U1, Y );
- add( t, Y, Y );
- sub( Y, Half, Y );
- add( Half, Y, X );
- sub( X, Half, Y );
- add( Half, Y, X );
- k = cmp( U1, X );
- k2 = cmp( X, Zero );
- } while ( ! ((k <= 0) || (k2 <= 0)));
- /*... now U1 == 1 ulp of 1 - ... */
- if( cmp( U1, E1 ) == 0 )
- printf("confirms closest relative separation U1 .\n");
- else
- {
- printf("gets better closest relative separation U1 = " );
- show( U1 );
- }
- div( U1, One, W );
- sub( U1, Half, F9 );
- add( F9, Half, F9 );
- div( U1, U2, t );
- div( TwoForty, One, t2 );
- add( t2, t, t );
- FLOOR( t, Radix );
- if( cmp(Radix, E0) == 0 )
- printf("Radix confirmed.\n");
- else
- {
- printf("MYSTERY: recalculated Radix = " );
- show( Radix );
- mov( E0, Radix );
- }
- add( Eight, Eight, t );
- if( cmp( Radix, t ) > 0 )
- {
- printf( "Radix is too big: roundoff problems\n" );
- ErrCnt[Defect] += 1;
- }
- k = 1;
- if( cmp( Radix, Two ) == 0 )
- k = 0;
- if( cmp( Radix, Ten ) == 0 )
- k = 0;
- if( cmp( Radix, One ) == 0 )
- k = 0;
- if( k != 0 )
- {
- printf( "Radix is not as good as 2 or 10\n" );
- ErrCnt[Flaw] += 1;
- }
- /*=============================================*/
- Milestone = 20;
- /*=============================================*/
- sub( Half, F9, t );
- if( cmp( t, Half ) >= 0 )
- {
- printf( "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?\n" );
- ErrCnt[Failure] += 1;
- }
- mov( F9, X );
- I = 1;
- sub( Half, X, Y );
- sub( Half, Y, Z );
- if( (cmp( X, One ) == 0) && (cmp( Z, Zero) != 0) )
- {
- printf( "Comparison is fuzzy ,X=1 but X-1/2-1/2 != 0\n" );
- ErrCnt[Failure] += 1;
- }
- add( One, U2, X );
- I = 0;
- /*=============================================*/
- Milestone = 25;
- /*=============================================*/
- /*... BMinusU2 = nextafter(Radix, 0) */
- sub( One, Radix, BMinusU2 );
- sub( U2, BMinusU2, t );
- add( One, t, BMinusU2 );
- /* Purify Integers */
- if( cmp(Radix,One) != 0 )
- {
- /*X = - TwoForty * LOG(U1) / LOG(Radix);*/
- LOG( U1, X );
- LOG( Radix, t );
- div( t, X, X );
- mul( TwoForty, X, X );
- neg( X );
- add( Half, X, Y );
- FLOOR( Y, Y );
- sub( Y, X, t );
- FABS( t );
- mul( Four, t, t );
- if( cmp( t, One ) < 0 )
- mov( Y, X );
- div( TwoForty, X, Precision );
- add( Half, Precision, Y );
- FLOOR( Y, Y );
- sub( Y, Precision, t );
- FABS( t );
- mul( TwoForty, t, t );
- if( cmp( t, Half ) < 0 )
- mov( Y, Precision );
- }
- FLOOR( Precision, t );
- if( (cmp( Precision, t ) != 0) || (cmp( Radix, One ) == 0) )
- {
- printf("Precision cannot be characterized by an Integer number\n");
- printf("of significant digits but, by itself, this is a minor flaw.\n");
- }
- if( cmp(Radix, One) == 0 )
- printf("logarithmic encoding has precision characterized solely by U1.\n");
- else
- {
- printf("The number of significant digits of the Radix is " );
- show( Precision );
- }
- mul( U2, Nine, t );
- mul( Nine, t, t );
- mul( TwoForty, t, t );
- if( cmp( t, One ) >= 0 )
- {
- printf( "Precision worse than 5 decimal figures\n" );
- ErrCnt[Serious] += 1;
- }
- /*=============================================*/
- Milestone = 30;
- /*=============================================*/
- /* Test for extra-precise subepressions has been deleted. */
- Milestone = 35;
- /*=============================================*/
- if( cmp(Radix,Two) >= 0 )
- {
- mul( Radix, Radix, t );
- div( t, W, X );
- add( X, One, Y );
- sub( X, Y, Z );
- add( Z, U2, T );
- sub( Z, T, X );
- if( cmp( X, U2 ) != 0 )
- {
- printf( "Subtraction is not normalized X=Y,X+Z != Y+Z!\n" );
- ErrCnt[Failure] += 1;
- }
- if( cmp(X,U2) == 0 )
- printf("Subtraction appears to be normalized, as it should be.");
- }
- printf("\nChecking for guard digit in *, /, and -.\n");
- mul( F9, One, Y );
- mul( One, F9, Z );
- sub( Half, F9, X );
- sub( Half, Y, Y );
- sub( X, Y, Y );
- sub( Half, Z, Z );
- sub( X, Z, Z );
- add( One, U2, X );
- mul( X, Radix, T );
- mul( Radix, X, R );
- sub( Radix, T, X );
- mul( Radix, U2, t );
- sub( t, X, X );
- sub( Radix, R, T );
- mul( Radix, U2, t );
- sub( t, T, T );
- sub( One, Radix, t );
- mul( t, X, X );
- sub( One, Radix, t );
- mul( t, T, T );
- k = cmp(X,Zero);
- k |= cmp(Y,Zero);
- k |= cmp(Z,Zero);
- k |= cmp(T,Zero);
- if( k == 0 )
- GMult = Yes;
- else
- {
- GMult = No;
- ErrCnt[Serious] += 1;
- printf( "* lacks a Guard Digit, so 1*X != X\n" );
- }
- mul( Radix, U2, Z );
- add( One, Z, X );
- add( X, Z, Y );
- mul( X, X, t );
- sub( t, Y, Y );
- FABS( Y );
- sub( U2, Y, Y );
- sub( U2, One, X );
- sub( U2, X, Z );
- mul( X, X, t );
- sub( t, Z, Z );
- FABS( Z );
- sub( U1, Z, Z );
- if( (cmp(Y,Zero) > 0) || (cmp(Z,Zero) > 0) )
- {
- ErrCnt[Failure] += 1;
- printf( "* gets too many final digits wrong.\n" );
- }
- sub( U2, One, Y );
- add( One, U2, X );
- div( Y, One, Z );
- sub( X, Z, Y );
- div( Three, One, X );
- div( Nine, Three, Z );
- sub( Z, X, X );
- div( TwentySeven, Nine, T );
- sub( T, Z, Z );
- k = cmp( X, Zero );
- k |= cmp( Y, Zero );
- k |= cmp( Z, Zero );
- if( k )
- {
- ErrCnt[Defect] += 1;
- printf( "Division lacks a Guard Digit, so error can exceed 1 ulp\n" );
- printf( "or 1/3 and 3/9 and 9/27 may disagree\n" );
- }
- div( One, F9, Y );
- sub( Half, F9, X );
- sub( Half, Y, Y );
- sub( X, Y, Y );
- add( One, U2, X );
- div( One, X, T );
- sub( X, T, X );
- k = cmp( X, Zero );
- k |= cmp( Y, Zero );
- k |= cmp( Z, Zero );
- if( k == 0 )
- GDiv = Yes;
- else
- {
- GDiv = No;
- ErrCnt[Serious] += 1;
- printf( "Division lacks a Guard Digit, so X/1 != X\n" );
- }
- add( One, U2, X );
- div( X, One, X );
- sub( Half, X, Y );
- sub( Half, Y, Y );
- if( cmp(Y,Zero) >= 0 )
- {
- ErrCnt[Serious] += 1;
- printf( "Computed value of 1/1.000..1 >= 1\n" );
- }
- sub( U2, One, X );
- mul( Radix, U2, Y );
- add( One, Y, Y );
- mul( X, Radix, Z );
- mul( Y, Radix, T );
- div( Radix, Z, R );
- div( Radix, T, StickyBit );
- sub( X, R, X );
- sub( Y, StickyBit, Y );
- k = cmp( X, Zero );
- k |= cmp( Y, Zero );
- if( k )
- {
- ErrCnt[Failure] += 1;
- printf( "* and/or / gets too many last digits wrong\n" );
- }
- sub( U1, One, Y );
- sub( F9, One, X );
- sub( Y, One, Y );
- sub( U2, Radix, T );
- sub( BMinusU2, Radix, Z );
- sub( T, Radix, T );
- k = cmp( X, U1 );
- k |= cmp( Y, U1 );
- k |= cmp( Z, U2 );
- k |= cmp( T, U2 );
- if( k == 0 )
- GAddSub = Yes;
- else
- {
- GAddSub = No;
- ErrCnt[Serious] += 1;
- printf( "- lacks Guard Digit, so cancellation is obscured\n" );
- }
- sub( One, F9, t );
- if( (cmp(F9,One) != 0) && (cmp(t,Zero) >= 0) )
- {
- ErrCnt[Serious] += 1;
- printf("comparison alleges (1-U1) < 1 although\n");
- printf(" subtration yields (1-U1) - 1 = 0 , thereby vitiating\n");
- printf(" such precautions against division by zero as\n");
- printf(" ... if (X == 1.0) {.....} else {.../(X-1.0)...}\n");
- }
- if (GMult == Yes && GDiv == Yes && GAddSub == Yes)
- printf(" *, /, and - appear to have guard digits, as they should.\n");
- /*=============================================*/
- Milestone = 40;
- /*=============================================*/
- printf("Checking rounding on multiply, divide and add/subtract.\n");
- RMult = Other;
- RDiv = Other;
- RAddSub = Other;
- div( Two, Radix, RadixD2 );
- mov( Two, A1 );
- Done = False;
- do
- {
- mov( Radix, AInvrse );
- do
- {
- mov( AInvrse, X );
- div( A1, AInvrse, AInvrse );
- FLOOR( AInvrse, t );
- k = cmp( t, AInvrse );
- }
- while( ! (k != 0 ) );
- k = cmp( X, One );
- k2 = cmp( A1, Three );
- Done = (k == 0) || (k2 > 0);
- if(! Done)
- add( Nine, One, A1 );
- }
- while( ! (Done));
- if( cmp(X, One) == 0 )
- mov( Radix, A1 );
- div( A1, One, AInvrse );
- mov( A1, X );
- mov( AInvrse, Y );
- Done = False;
- do
- {
- mul( X, Y, Z );
- sub( Half, Z, Z );
- if( cmp( Z, Half ) != 0 )
- {
- ErrCnt[Failure] += 1;
- printf( "X * (1/X) differs from 1\n" );
- }
- k = cmp( X, Radix );
- Done = (k == 0);
- mov( Radix, X );
- div( X, One, Y );
- }
- while( ! (Done));
- add( One, U2, Y2 );
- sub( U2, One, YY1 );
- sub( U2, OneAndHalf, X );
- add( OneAndHalf, U2, Y );
- sub( U2, X, Z );
- mul( Z, Y2, Z );
- mul( Y, YY1, T );
- sub( X, Z, Z );
- sub( X, T, T );
- mul( X, Y2, X );
- add( Y, U2, Y );
- mul( Y, YY1, Y );
- sub( OneAndHalf, X, X );
- sub( OneAndHalf, Y, Y );
- k = cmp( X, Zero );
- k |= cmp( Y, Zero );
- k |= cmp( Z, Zero );
- if( cmp( T, Zero ) > 0 )
- k = 1;
- if( k == 0 )
- {
- add( OneAndHalf, U2, X );
- mul( X, Y2, X );
- sub( U2, OneAndHalf, Y );
- sub( U2, Y, Y );
- add( OneAndHalf, U2, Z );
- add( U2, Z, Z );
- sub( U2, OneAndHalf, T );
- mul( T, YY1, T );
- add( Z, U2, t );
- sub( t, X, X );
- mul( Y, YY1, StickyBit );
- mul( Z, Y2, S );
- sub( Y, T, T );
- sub( Y, U2, Y );
- add( StickyBit, Y, Y );
- /* Z = S - (Z + U2 + U2); */
- add( Z, U2, t );
- add( t, U2, t );
- sub( t, S, Z );
- add( Y2, U2, t );
- mul( t, YY1, StickyBit );
- mul( Y2, YY1, YY1 );
- sub( Y2, StickyBit, StickyBit );
- sub( Half, YY1, YY1 );
- k = cmp( X, Zero );
- k |= cmp( Y, Zero );
- k |= cmp( Z, Zero );
- k |= cmp( T, Zero );
- k |= cmp( StickyBit, Zero );
- k |= cmp( YY1, Half );
- if( k == 0 )
- {
- RMult = Rounded;
- printf("Multiplication appears to round correctly.\n");
- }
- else
- {
- add( X, U2, t );
- k = cmp( t, Zero );
- if( cmp( Y, Zero ) >= 0 )
- k |= 1;
- add( Z, U2, t );
- k |= cmp( t, Zero );
- if( cmp( T, Zero ) >= 0 )
- k |= 1;
- add( StickyBit, U2, t );
- k |= cmp( t, Zero );
- if( cmp(YY1, Half) >= 0 )
- k |= 1;
- if( k == 0 )
- {
- printf("Multiplication appears to chop.\n");
- }
- else
- {
- printf("* is neither chopped nor correctly rounded.\n");
- }
- if( (RMult == Rounded) && (GMult == No) )
- printf("Multiplication has inconsistent result");
- }
- }
- else
- printf("* is neither chopped nor correctly rounded.\n");
- /*=============================================*/
- Milestone = 45;
- /*=============================================*/
- add( One, U2, Y2 );
- sub( U2, One, YY1 );
- add( OneAndHalf, U2, Z );
- add( Z, U2, Z );
- div( Y2, Z, X );
- sub( U2, OneAndHalf, T );
- sub( U2, T, T );
- sub( U2, T, Y );
- div( YY1, Y, Y );
- add( Z, U2, Z );
- div( Y2, Z, Z );
- sub( OneAndHalf, X, X );
- sub( T, Y, Y );
- div( YY1, T, T );
- add( OneAndHalf, U2, t );
- sub( t, Z, Z );
- sub( OneAndHalf, U2, t );
- add( t, T, T );
- k = 0;
- if( cmp( X, Zero ) > 0 )
- k = 1;
- if( cmp( Y, Zero ) > 0 )
- k = 1;
- if( cmp( Z, Zero ) > 0 )
- k = 1;
- if( cmp( T, Zero ) > 0 )
- k = 1;
- if( k == 0 )
- {
- div( Y2, OneAndHalf, X );
- sub( U2, OneAndHalf, Y );
- add( U2, OneAndHalf, Z );
- sub( Y, X, X );
- div( YY1, OneAndHalf, T );
- div( YY1, Y, Y );
- add( Z, U2, t );
- sub( t, T, T );
- sub( Z, Y, Y );
- div( Y2, Z, Z );
- add( Y2, U2, YY1 );
- div( Y2, YY1, YY1 );
- sub( OneAndHalf, Z, Z );
- sub( Y2, YY1, Y2 );
- sub( U1, F9, YY1 );
- div( F9, YY1, YY1 );
- k = cmp( X, Zero );
- k |= cmp( Y, Zero );
- k |= cmp( Z, Zero );
- k |= cmp( T, Zero );
- k |= cmp( Y2, Zero );
- sub( Half, YY1, t );
- sub( Half, F9, t2 );
- k |= cmp( t, t2 );
- if( k == 0 )
- {
- RDiv = Rounded;
- printf("Division appears to round correctly.\n");
- if(GDiv == No)
- printf("Division test inconsistent\n");
- }
- else
- {
- k = 0;
- if( cmp( X, Zero ) >= 0 )
- k = 1;
- if( cmp( Y, Zero ) >= 0 )
- k = 1;
- if( cmp( Z, Zero ) >= 0 )
- k = 1;
- if( cmp( T, Zero ) >= 0 )
- k = 1;
- if( cmp( Y, Zero ) >= 0 )
- k = 1;
- sub( Half, YY1, t );
- sub( Half, F9, t2 );
- if( cmp( t, t2 ) >= 0 )
- k = 1;
- if( k == 0 )
- {
- RDiv = Chopped;
- printf("Division appears to chop.\n");
- }
- }
- }
- if(RDiv == Other)
- printf("/ is neither chopped nor correctly rounded.\n");
- div( Radix, One, BInvrse );
- mul( BInvrse, Radix, t );
- sub( Half, t, t );
- if( cmp( t, Half ) != 0 )
- {
- ErrCnt[Failure] += 1;
- printf( "Radix * ( 1 / Radix ) differs from 1\n" );
- }
- Milestone = 50;
- /*=============================================*/
- add( F9, U1, t );
- sub( Half, t, t );
- k = cmp( t, Half );
- add( BMinusU2, U2, t );
- sub( One, t, t );
- sub( One, Radix, t2 );
- k |= cmp( t, t2 );
- if( k != 0 )
- {
- ErrCnt[Failure] += 1;
- printf( "Incomplete carry-propagation in Addition\n" );
- }
- mul( U1, U1, X );
- sub( X, One, X );
- sub( U2, One, Y );
- mul( U2, Y, Y );
- add( One, Y, Y );
- sub( Half, F9, Z );
- sub( Half, X, X );
- sub( Z, X, X );
- sub( One, Y, Y );
- if( (cmp(X,Zero) == 0) && (cmp(Y,Zero) == 0) )
- {
- RAddSub = Chopped;
- printf("Add/Subtract appears to be chopped.\n");
- }
- if(GAddSub == Yes)
- {
- add( Half, U2, X );
- mul( X, U2, X );
- sub( U2, Half, Y );
- mul( Y, U2, Y );
- add( One, X, X );
- add( One, Y, Y );
- add( One, U2, t );
- sub( X, t, X );
- sub( Y, One, Y );
- k = cmp(X,Zero);
- if( k )
- printf( "1+U2-[u2(1/2+U2)+1] != 0\n" );
- k2 = cmp(Y,Zero);
- if( k2 )
- printf( "1-[U2(1/2-U2)+1] != 0\n" );
- k |= k2;
- if( k == 0 )
- {
- add( Half, U2, X );
- mul( X, U1, X );
- sub( U2, Half, Y );
- mul( Y, U1, Y );
- sub( X, One, X );
- sub( Y, One, Y );
- sub( X, F9, X );
- sub( Y, One, Y );
- k = cmp(X,Zero);
- if( k )
- printf( "F9-[1-U1(1/2+U2)] != 0\n" );
- k2 = cmp(Y,Zero);
- if( k2 )
- printf( "1-[1-U1(1/2-U2)] != 0\n" );
- k |= k2;
- if( k == 0 )
- {
- RAddSub = Rounded;
- printf("Addition/Subtraction appears to round correctly.\n");
- if(GAddSub == No)
- printf( "Add/Subtract test inconsistent\n");
- }
- else
- {
- printf("Addition/Subtraction neither rounds nor chops.\n");
- }
- }
- else
- printf("Addition/Subtraction neither rounds nor chops.\n");
- }
- else
- printf("Addition/Subtraction neither rounds nor chops.\n");
- mov( One, S );
- add( One, Half, X );
- mul( Half, X, X );
- add( One, X, X );
- add( One, U2, Y );
- mul( Y, Half, Y );
- sub( Y, X, Z );
- sub( X, Y, T );
- add( Z, T, StickyBit );
- if( cmp(StickyBit, Zero) != 0 )
- {
- mov( Zero, S );
- ErrCnt[Flaw] += 1;
- printf( "(X - Y) + (Y - X) is non zero!\n" );
- }
- mov( Zero, StickyBit );
- FLOOR( RadixD2, t );
- k2 = cmp( t, RadixD2 );
- k = 1;
- if( (GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes)
- && (RMult == Rounded) && (RDiv == Rounded)
- && (RAddSub == Rounded) && (k2 == 0) )
- {
- printf("Checking for sticky bit.\n");
- k = 0;
- add( Half, U1, X );
- mul( X, U2, X );
- mul( Half, U2, Y );
- add( One, Y, Z );
- add( One, X, T );
- sub( One, Z, t );
- sub( One, T, t2 );
- if( cmp(t,Zero) > 0 )
- {
- k = 1;
- printf( "[1+(1/2)U2]-1 > 0\n" );
- }
- if( cmp(t2,U2) < 0 )
- {
- k = 1;
- printf( "[1+U2(1/2+U1)]-1 < U2\n" );
- }
- add( T, Y, Z );
- sub( X, Z, Y );
- sub( T, Z, t );
- sub( T, Y, t2 );
- if( cmp(t,U2) < 0 )
- {
- k = 1;
- printf( "[[1+U2(1/2+U1)]+(1/2)U2]-[1+U2(1/2+U1)] < U2\n" );
- }
- if( cmp(t2,Zero) != 0 )
- {
- k = 1;
- printf( "(1/2)U2-[1+U2(1/2+U1)] != 0\n" );
- }
- add( Half, U1, X );
- mul( X, U1, X );
- mul( Half, U1, Y );
- sub( Y, One, Z );
- sub( X, One, T );
- sub( One, Z, t );
- sub( F9, T, t2 );
- if( cmp(t,Zero) != 0 )
- {
- k = 1;
- printf( "(1-(1/2)U1)-1 != 0\n" );
- }
- if( cmp(t2,Zero) != 0 )
- {
- k = 1;
- printf( "[1-U1(1/2+U1)]-F9 != 0\n" );
- }
- sub( U1, Half, Z );
- mul( Z, U1, Z );
- sub( Z, F9, T );
- sub( Y, F9, Q );
- sub( F9, T, t );
- if( cmp( t, Zero ) != 0 )
- {
- k = 1;
- printf( "[F9-U1(1/2-U1)]-F9 != 0\n" );
- }
- sub( U1, F9, t );
- sub( Q, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- k = 1;
- printf( "(F9-U1)-(F9-(1/2)U1) != 0\n" );
- }
- add( One, U2, Z );
- mul( Z, OneAndHalf, Z );
- add( OneAndHalf, U2, T );
- sub( Z, T, T );
- add( U2, T, T );
- div( Radix, Half, X );
- add( One, X, X );
- mul( Radix, U2, Y );
- add( One, Y, Y );
- mul( X, Y, Z );
- if( cmp( T, Zero ) != 0 )
- {
- k = 1;
- printf( "(3/2+U2)-3/2(1+U2)+U2 != 0\n" );
- }
- mul( Radix, U2, t );
- add( X, t, t );
- sub( Z, t, t );
- if( cmp( t, Zero ) != 0 )
- {
- k = 1;
- printf( "(1+1/2Radix)+Radix*U2-[1+1/(2Radix)][1+Radix*U2] != 0\n" );
- }
- if( cmp(Radix, Two) != 0 )
- {
- add( Two, U2, X );
- div( Two, X, Y );
- sub( One, Y, t );
- if( cmp( t, Zero) != 0 )
- k = 1;
- }
- }
- if( k == 0 )
- {
- printf("Sticky bit apparently used correctly.\n");
- mov( One, StickyBit );
- }
- else
- {
- printf("Sticky bit used incorrectly or not at all.\n");
- }
- if( GMult == No || GDiv == No || GAddSub == No ||
- RMult == Other || RDiv == Other || RAddSub == Other)
- {
- ErrCnt[Flaw] += 1;
- printf("lack(s) of guard digits or failure(s) to correctly round or chop\n");
- printf( "(noted above) count as one flaw in the final tally below\n" );
- }
- /*=============================================*/
- Milestone = 60;
- /*=============================================*/
- printf("\n");
- printf("Does Multiplication commute? ");
- printf("Testing on %d random pairs.\n", NoTrials);
- SQRT( Three, Random9 );
- mov( Third, Random1 );
- I = 1;
- do
- {
- Random();
- mov( Random1, X );
- Random();
- mov( Random1, Y );
- mul( Y, X, Z9 );
- mul( X, Y, Z );
- sub( Z9, Z, Z9 );
- I = I + 1;
- }
- while ( ! ((I > NoTrials) || (cmp(Z9,Zero) != 0)));
- if(I == NoTrials)
- {
- div( Three, Half, t );
- add( One, t, Random1 );
- add( U2, U1, t );
- add( t, One, Random2 );
- mul( Random1, Random2, Z );
- mul( Random2, Random1, Y );
- /* Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half /
- * Three) * ((U2 + U1) + One);
- */
- div( Three, Half, t2 );
- add( One, t2, t2 );
- add( U2, U1, t );
- add( t, One, t );
- mul( t2, t, Z9 );
- mul( t2, t, t );
- sub( t, Z9, Z9 );
- }
- if(! ((I == NoTrials) || (cmp(Z9,Zero) == 0)))
- {
- ErrCnt[Defect] += 1;
- printf( "X * Y == Y * X trial fails.\n");
- }
- else
- {
- printf(" No failures found in %d integer pairs.\n", NoTrials);
- }
- /*=============================================*/
- Milestone = 70;
- /*=============================================*/
- sqtest();
- Milestone = 90;
- pow1test();
- Milestone = 110;
- printf("Seeking Underflow thresholds UfThold and E0.\n");
- mov( U1, D );
- FLOOR( Precision, t );
- if( cmp(Precision, t) != 0 )
- {
- mov( BInvrse, D );
- mov( Precision, X );
- do
- {
- mul( D, BInvrse, D );
- sub( One, X, X );
- }
- while( cmp(X, Zero) > 0 );
- }
- mov( One, Y );
- mov( D, Z );
- /* ... D is power of 1/Radix < 1. */
- sigsave = sigfpe;
- if( setjmp(ovfl_buf) )
- goto under0;
- do
- {
- mov( Y, C );
- mov( Z, Y );
- mul( Y, Y, Z );
- add( Z, Z, t );
- }
- while( (cmp(Y,Z) > 0) && (cmp(t,Z) > 0) );
- under0:
- sigsave = 0;
- mov( C, Y );
- mul( Y, D, Z );
- sigsave = sigfpe;
- if( setjmp(ovfl_buf) )
- goto under1;
- do
- {
- mov( Y, C );
- mov( Z, Y );
- mul( Y, D, Z );
- add( Z, Z, t );
- }
- while( (cmp(Y,Z) > 0) && (cmp(t,Z) > 0) );
- under1:
- sigsave = 0;
- if( cmp(Radix,Two) < 0 )
- mov( Two, HInvrse );
- else
- mov( Radix, HInvrse );
- div( HInvrse, One, H );
- /* ... 1/HInvrse == H == Min(1/Radix, 1/2) */
- div( C, One, CInvrse );
- mov( C, E0 );
- mul( E0, H, Z );
- /* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */
- sigsave = sigfpe;
- if( setjmp(ovfl_buf) )
- goto under2;
- do
- {
- mov( E0, Y );
- mov( Z, E0 );
- mul( E0, H, Z );
- add( Z, Z, t );
- }
- while( (cmp(E0,Z) > 0) && (cmp(t,Z) > 0) );
- under2:
- sigsave = 0;
- mov( E0, UfThold );
- mov( Zero, E1 );
- mov( Zero, Q );
- mov( U2, E9 );
- add( One, E9, S );
- mul( C, S, D );
- if( cmp(D,C) <= 0 )
- {
- mul( Radix, U2, E9 );
- add( One, E9, S );
- mul( C, S, D );
- if( cmp(D, C) <= 0 )
- {
- ErrCnt[Failure] += 1;
- printf( "multiplication gets too many last digits wrong.\n" );
- mov( E0, Underflow );
- mov( Zero, YY1 );
- mov( Z, PseudoZero );
- }
- }
- else
- {
- mov( D, Underflow );
- mul( Underflow, H, PseudoZero );
- mov( Zero, UfThold );
- do
- {
- mov( Underflow, YY1 );
- mov( PseudoZero, Underflow );
- add( E1, E1, t );
- if( cmp(t, E1) <= 0)
- {
- mul( Underflow, HInvrse, Y2 );
- sub( Y2, YY1, E1 );
- FABS( E1 );
- mov( YY1, Q );
- if( (cmp( UfThold, Zero ) == 0)
- && (cmp(YY1, Y2) != 0) )
- mov( YY1, UfThold );
- }
- mul( PseudoZero, H, PseudoZero );
- add( PseudoZero, PseudoZero, t );
- }
- while( (cmp(Underflow, PseudoZero) > 0)
- && (cmp(t, PseudoZero) > 0) );
- }
- /* Comment line 4530 .. 4560 */
- if( cmp(PseudoZero, Zero) != 0 )
- {
- printf("\n");
- mov(PseudoZero, Z );
- /* ... Test PseudoZero for "phoney- zero" violates */
- /* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero
- ... */
- if( cmp(PseudoZero, Zero) <= 0 )
- {
- ErrCnt[Failure] += 1;
- printf("Positive expressions can underflow to an\n");
- printf("allegedly negative value\n");
- printf("PseudoZero that prints out as: " );
- show( PseudoZero );
- mov( PseudoZero, X );
- neg( X );
- if( cmp(X, Zero) <= 0 )
- {
- printf("But -PseudoZero, which should be\n");
- printf("positive, isn't; it prints out as " );
- show( X );
- }
- }
- else
- {
- ErrCnt[Flaw] += 1;
- printf( "Underflow can stick at an allegedly positive\n");
- printf("value PseudoZero that prints out as " );
- show( PseudoZero );
- }
- /* TstPtUf();*/
- }
- /*=============================================*/
- Milestone = 120;
- /*=============================================*/
- mul( CInvrse, Y, t );
- mul( CInvrse, YY1, t2 );
- if( cmp(t,t2) > 0 )
- {
- mul( H, S, S );
- mov( Underflow, E0 );
- }
- if(! ((cmp(E1,Zero) == 0) || (cmp(E1,E0) == 0)) )
- {
- ErrCnt[Defect] += 1;
- if( cmp(E1,E0) < 0 )
- {
- printf("Products underflow at a higher");
- printf(" threshold than differences.\n");
- if( cmp(PseudoZero,Zero) == 0 )
- mov( E1, E0 );
- }
- else
- {
- printf("Difference underflows at a higher");
- printf(" threshold than products.\n");
- }
- }
- printf("Smallest strictly positive number found is E0 = " );
- show( E0 );
- mov( E0, Z );
- TstPtUf();
- mov( E0, Underflow );
- if(N == 1)
- mov( Y, Underflow );
- I = 4;
- if( cmp(E1,Zero) == 0 )
- I = 3;
- if( cmp( UfThold,Zero) == 0 )
- I = I - 2;
- UfNGrad = True;
- switch(I)
- {
- case 1:
- mov( Underflow, UfThold );
- mul( CInvrse, Q, t );
- mul( CInvrse, Y, t2 );
- mul( t2, S, t2 );
- if( cmp( t, t2 ) != 0 )
- {
- mov( Y, UfThold );
- ErrCnt[Failure] += 1;
- printf( "Either accuracy deteriorates as numbers\n");
- printf("approach a threshold = " );
- show( UfThold );
- printf(" coming down from " );
- show( C );
- printf(" or else multiplication gets too many last digits wrong.\n");
- }
- break;
-
- case 2:
- ErrCnt[Failure] += 1;
- printf( "Underflow confuses Comparison which alleges that\n");
- printf("Q == Y while denying that |Q - Y| == 0; these values\n");
- printf("print out as Q = " );
- show( Q );
- printf( ", Y = " );
- show( Y );
- sub( Y2, Q, t );
- FABS(t);
- printf ("|Q - Y| = " );
- show( t );
- mov( Q, UfThold );
- break;
-
- case 3:
- mov( X, X );
- break;
-
- case 4:
- div( E9, E1, t );
- sub( t, UfThold, t );
- FABS(t);
- if( (cmp(Q,UfThold) == 0) && (cmp(E1,E0) == 0)
- && (cmp(t,E1) <= 0) )
- {
- UfNGrad = False;
- printf("Underflow is gradual; it incurs Absolute Error =\n");
- printf("(roundoff in UfThold) < E0.\n");
- mul( E0, CInvrse, Y );
- add( OneAndHalf, U2, t );
- mul( Y, t, Y );
- add( One, U2, X );
- mul( CInvrse, X, X );
- div( X, Y, t );
- IEEE = (cmp(t,E0) == 0);
- if( IEEE == 0 )
- {
- printf( "((CInvrse E0) (1.5+U2)) / (CInvrse (1+U2)) != E0\n" );
- printf( "CInvrse = " );
- show( CInvrse );
- printf( "E0 = " );
- show( E0 );
- printf( "U2 = " );
- show( U2 );
- printf( "X = " );
- show(X);
- printf( "Y = " );
- show(Y);
- printf( "Y/X = " );
- show(t);
- }
- }
- }
- if(UfNGrad)
- {
- printf("\n");
- div( UfThold, Underflow, R );
- SQRT( R, R );
- if( cmp(R,H) <= 0)
- {
- mul( R, UfThold, Z );
- /* X = Z * (One + R * H * (One + H));*/
- add( One, H, X );
- mul( H, X, X );
- mul( R, X, X );
- add( One, X, X );
- mul( Z, X, X );
- }
- else
- {
- mov( UfThold, Z );
- /*X = Z * (One + H * H * (One + H));*/
- add( One, H, X );
- mul( H, X, X );
- mul( H, X, X );
- add( One, X, X );
- mul( Z, X, X );
- }
- sub( Z, X, t );
- /* if(! ((cmp(X,Z) == 0) || (cmp(t,Zero) != 0)) )*/
- if( (cmp(X,Z) != 0) && (cmp(t,Zero) == 0) )
- {
- /* ErrCnt[Flaw] += 1;*/
- ErrCnt[Serious] += 1;
- printf("X = " );
- show( X );
- printf( "\tis not equal to Z = " );
- show( Z );
- /* sub( Z, X, Z9 );*/
- printf("yet X - Z yields " );
- show( t );
- printf("which compares equal to " );
- show( Zero );
- printf(" Should this NOT signal Underflow, ");
- printf("this is a SERIOUS DEFECT\nthat causes ");
- printf("confusion when innocent statements like\n");;
- printf(" if (X == Z) ... else");
- printf(" ... (f(X) - f(Z)) / (X - Z) ...\n");
- printf("encounter Division by Zero although actually\n");
- printf("X / Z = 1 + " );
- div( Z, X, t );
- sub( Half, t, t );
- sub( Half, t, t );
- show(t);
- }
- }
- printf("The Underflow threshold is " );
- show( UfThold );
- printf( "below which calculation may suffer larger Relative error than" );
- printf( " merely roundoff.\n");
- mul( U1, U1, Y2 );
- mul( Y2, Y2, Y );
- mul( Y, U1, Y2 );
- if( cmp( Y2,UfThold) <= 0 )
- {
- if( cmp(Y,E0) > 0 )
- {
- ErrCnt[Defect] += 1;
- I = 5;
- }
- else
- {
- ErrCnt[Serious] += 1;
- I = 4;
- }
- printf("Range is too narrow; U1^%d Underflows.\n", I);
- }
- Milestone = 130;
- /*Y = - FLOOR(Half - TwoForty * LOG(UfThold) / LOG(HInvrse)) / TwoForty;*/
- LOG( UfThold, Y );
- LOG( HInvrse, t );
- div( t, Y, Y );
- mul( TwoForty, Y, Y );
- sub( Y, Half, Y );
- FLOOR( Y, Y );
- div( TwoForty, Y, Y );
- neg(Y);
- sub( One, Y, Y2 ); /* ***** changed from Y2 = Y + Y */
- printf("Since underflow occurs below the threshold\n");
- printf("UfThold = " );
- show( HInvrse );
- printf( "\tto the power " );
- show( Y );
- printf( "only underflow should afflict the expression " );
- show( HInvrse );
- printf( "\tto the power " );
- show( Y2 );
- POW( HInvrse, Y2, V9 );
- printf("Actually calculating yields: " );
- show( V9 );
- add( Radix, Radix, t );
- add( t, E9, t );
- mul( t, UfThold, t );
- if( (cmp(V9,Zero) < 0) || (cmp(V9,t) > 0) )
- {
- ErrCnt[Serious] += 1;
- printf( "this is not between 0 and underflow\n");
- printf(" threshold = " );
- show( UfThold );
- }
- else
- {
- add( One, E9, t );
- mul( UfThold, t, t );
- if( cmp(V9,t) <= 0 )
- printf("This computed value is O.K.\n");
- else
- {
- ErrCnt[Defect] += 1;
- printf( "this is not between 0 and underflow\n");
- printf(" threshold = " );
- show( UfThold );
- }
- }
- Milestone = 140;
- pow2test();
-
- /*=============================================*/
- Milestone = 160;
- /*=============================================*/
- Pause();
- printf("Searching for Overflow threshold:\n");
- printf("This may generate an error.\n");
- sigsave = sigfpe;
- I = 0;
- mov( CInvrse, Y ); /* a large power of 2 */
- neg(Y);
- mul( HInvrse, Y, V9 ); /* HInvrse = 2 */
- if (setjmp(ovfl_buf))
- goto overflow;
- do
- {
- mov( Y, V );
- mov( V9, Y );
- mul( HInvrse, Y, V9 );
- }
- while( cmp(V9,Y) < 0 ); /* V9 = 2 * Y */
- I = 1;
- overflow:
- show( HInvrse );
- printf( "\ttimes " );
- show( Y );
- printf( "\tequals " );
- show( V9 );
- mov( V9, Z );
- printf("Can `Z = -Y' overflow?\n");
- printf("Trying it on Y = " );
- show(Y);
- mov( Y, V9 );
- neg( V9 );
- mov( V9, V0 );
- sub( Y, V, t );
- add( V, V0, t2 );
- if( cmp(t,t2) == 0 )
- printf("Seems O.K.\n");
- else
- {
- printf("finds a Flaw, -(-Y) differs from Y.\n");
- printf( "V-Y=t:" );
- show(V);
- show(Y);
- show(t);
- printf( "V+V0=t2:" );
- show(V);
- show(V0);
- show(t2);
- ErrCnt[Flaw] += 1;
- }
- if( (cmp(Z, Y) != 0) && (I != 0) )
- {
- ErrCnt[Serious] += 1;
- printf("overflow past " );
- show( Y );
- printf( "\tshrinks to " );
- show( Z );
- printf( "= Y * " );
- show( HInvrse );
- }
- /*Y = V * (HInvrse * U2 - HInvrse);*/
- mul( HInvrse, U2, Y );
- sub( HInvrse, Y, Y );
- mul( V, Y, Y );
- /*Z = Y + ((One - HInvrse) * U2) * V;*/
- sub( HInvrse, One, Z );
- mul( Z, U2, Z );
- mul( Z, V, Z );
- add( Y, Z, Z );
- if( cmp(Z,V0) < 0 )
- mov( Z, Y );
- if( cmp(Y,V0) < 0)
- mov( Y, V );
- sub( V, V0, t );
- if( cmp(t,V0) < 0 )
- mov( V0, V );
- printf("Overflow threshold is V = " );
- show( V );
- if(I)
- {
- printf("Overflow saturates at V0 = " );
- show( V0 );
- }
- else
- printf("There is no saturation value because the system traps on overflow.\n");
- mul( V, One, V9 );
- printf("No Overflow should be signaled for V * 1 = " );
- show( V9 );
- div( One, V, V9 );
- printf(" nor for V / 1 = " );
- show( V9 );
- printf("Any overflow signal separating this * from the one\n");
- printf("above is a DEFECT.\n");
- /*=============================================*/
- Milestone = 170;
- /*=============================================*/
- mov( V, t );
- neg( t );
- k = 0;
- if( cmp(t,V) >= 0 )
- k = 1;
- mov( V0, t );
- neg( t );
- if( cmp(t,V0) >= 0 )
- k = 1;
- mov( UfThold, t );
- neg(t);
- if( cmp(t,V) >= 0 )
- k = 1;
- if( cmp(UfThold,V) >= 0 )
- k = 1;
- if( k != 0 )
- {
- ErrCnt[Failure] += 1;
- printf( "Comparisons involving +-");
- show( V );
- show( V0 );
- show( UfThold );
- printf("are confused by Overflow." );
- }
- /*=============================================*/
- Milestone = 175;
- /*=============================================*/
- printf("\n");
- for(Indx = 1; Indx <= 3; ++Indx) {
- switch(Indx)
- {
- case 1: mov(UfThold, Z); break;
- case 2: mov( E0, Z); break;
- case 3: mov(PseudoZero, Z); break;
- }
- if( cmp(Z, Zero) != 0 )
- {
- SQRT( Z, V9 );
- mul( V9, V9, Y );
- mul( Radix, E9, t );
- sub( t, One, t );
- div( t, Y, t );
- add( One, Radix, t2 );
- add( t2, E9, t2 );
- mul( t2, Z, t2 );
- if( (cmp(t,Z) < 0) || (cmp(Y,t2) > 0) )
- {
- if( cmp(V9,U1) > 0 )
- ErrCnt[Serious] += 1;
- else
- ErrCnt[Defect] += 1;
- printf("Comparison alleges that what prints as Z = " );
- show( Z );
- printf(" is too far from sqrt(Z) ^ 2 = " );
- show( Y );
- }
- }
- }
- Milestone = 180;
- for(Indx = 1; Indx <= 2; ++Indx)
- {
- if(Indx == 1)
- mov( V, Z );
- else
- mov( V0, Z );
- SQRT( Z, V9 );
- mul( Radix, E9, X );
- sub( X, One, X );
- mul( X, V9, X );
- mul( V9, X, V9 );
- mul( Two, Radix, t );
- mul( t, E9, t );
- sub( t, One, t );
- mul( t, Z, t );
- if( (cmp(V9,t) < 0) || (cmp(V9,Z) > 0) )
- {
- mov( V9, Y );
- if( cmp(X,W) < 0 )
- ErrCnt[Serious] += 1;
- else
- ErrCnt[Defect] += 1;
- printf("Comparison alleges that Z = " );
- show( Z );
- printf(" is too far from sqrt(Z) ^ 2 :" );
- show( Y );
- }
- }
- Milestone = 190;
- Pause();
- mul( UfThold, V, X );
- mul( Radix, Radix, Y );
- mul( X, Y, t );
- if( (cmp(t,One) < 0) || (cmp(X,Y) > 0) )
- {
- mul( X, Y, t );
- div( U1, Y, t2 );
- if( (cmp(t,U1) < 0) || (cmp(X,t2) > 0) )
- {
- ErrCnt[Defect] += 1;
- printf( "Badly " );
- }
- else
- {
- ErrCnt[Flaw] += 1;
- }
- printf(" unbalanced range; UfThold * V = " );
- show( X );
- printf( "\tis too far from 1.\n");
- }
- Milestone = 200;
- for(Indx = 1; Indx <= 5; ++Indx)
- {
- mov( F9, X );
- switch(Indx)
- {
- case 2: add( One, U2, X ); break;
- case 3: mov( V, X ); break;
- case 4: mov(UfThold,X); break;
- case 5: mov(Radix,X);
- }
- mov( X, Y );
- sigsave = sigfpe;
- if (setjmp(ovfl_buf))
- {
- printf(" X / X traps when X = " );
- show( X );
- }
- else
- {
- /*V9 = (Y / X - Half) - Half;*/
- div( X, Y, t );
- sub( Half, t, t );
- sub( Half, t, V9 );
- if( cmp(V9,Zero) == 0 )
- continue;
- mov( U1, t );
- neg(t);
- if( (cmp(V9,t) == 0) && (Indx < 5) )
- {
- ErrCnt[Flaw] += 1;
- }
- else
- {
- ErrCnt[Serious] += 1;
- }
- printf(" X / X differs from 1 when X = " );
- show( X );
- printf(" instead, X / X - 1/2 - 1/2 = " );
- show( V9 );
- }
- }
- Pause();
- printf("\n");
- {
- static char *msg[] = {
- "FAILUREs encountered =",
- "SERIOUS DEFECTs discovered =",
- "DEFECTs discovered =",
- "FLAWs discovered =" };
- int i;
- for(i = 0; i < 4; i++) if (ErrCnt[i])
- printf("The number of %-29s %d.\n",
- msg[i], ErrCnt[i]);
- }
- printf("\n");
- if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect]
- + ErrCnt[Flaw]) > 0) {
- if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[
- Defect] == 0) && (ErrCnt[Flaw] > 0)) {
- printf("The arithmetic diagnosed seems ");
- printf("satisfactory though flawed.\n");
- }
- if ((ErrCnt[Failure] + ErrCnt[Serious] == 0)
- && ( ErrCnt[Defect] > 0)) {
- printf("The arithmetic diagnosed may be acceptable\n");
- printf("despite inconvenient Defects.\n");
- }
- if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0) {
- printf("The arithmetic diagnosed has ");
- printf("unacceptable serious defects.\n");
- }
- if (ErrCnt[Failure] > 0) {
- printf("Fatal FAILURE may have spoiled this");
- printf(" program's subsequent diagnoses.\n");
- }
- }
- else {
- printf("No failures, defects nor flaws have been discovered.\n");
- if (! ((RMult == Rounded) && (RDiv == Rounded)
- && (RAddSub == Rounded) && (RSqrt == Rounded)))
- printf("The arithmetic diagnosed seems satisfactory.\n");
- else {
- k = 0;
- if( cmp( Radix, Two ) == 0 )
- k = 1;
- if( cmp( Radix, Ten ) == 0 )
- k = 1;
- if( (cmp(StickyBit,One) >= 0) && (k == 1) )
- {
- printf("Rounding appears to conform to ");
- printf("the proposed IEEE standard P");
- k = 0;
- k |= cmp( Radix, Two );
- mul( Four, Three, t );
- mul( t, Two, t );
- sub( t, Precision, t );
- sub( TwentySeven, Precision, t2 );
- sub( TwentySeven, t2, t2 );
- add( t2, One, t2 );
- mul( t2, t, t );
- if( (cmp(Radix,Two) == 0)
- && (cmp(t,Zero) == 0) )
- printf("754");
- else
- printf("854");
- if(IEEE)
- printf(".\n");
- else
- {
- printf(",\nexcept for possibly Double Rounding");
- printf(" during Gradual Underflow.\n");
- }
- }
- printf("The arithmetic diagnosed appears to be excellent!\n");
- }
- }
- if (fpecount)
- printf("\nA total of %d floating point exceptions were registered.\n",
- fpecount);
- printf("END OF TEST.\n");
- }
- /* Random */
- /* Random computes
- X = (Random1 + Random9)^5
- Random1 = X - FLOOR(X) + 0.000005 * X;
- and returns the new value of Random1
- */
- static int randflg = 0;
- FLOAT(C5em6);
- Random()
- {
- if( randflg == 0 )
- {
- mov( Six, t );
- neg(t);
- POW( Ten, t, t );
- mul( Five, t, C5em6 );
- randflg = 1;
- }
- add( Random1, Random9, t );
- mul( t, t, t2 );
- mul( t2, t2, t2 );
- mul( t, t2, t );
- FLOOR(t, t2 );
- sub( t2, t, t2 );
- mul( t, C5em6, t );
- add( t, t2, Random1 );
- /*return(Random1);*/
- }
- /* SqXMinX */
- SqXMinX( ErrKind )
- int ErrKind;
- {
- mul( X, BInvrse, t2 );
- sub( t2, X, t );
- /*SqEr = ((SQRT(X * X) - XB) - XA) / OneUlp;*/
- mul( X, X, Sqarg );
- SQRT( Sqarg, SqEr );
- sub( t2, SqEr, SqEr );
- sub( t, SqEr, SqEr );
- div( OneUlp, SqEr, SqEr );
- if( cmp(SqEr,Zero) != 0)
- {
- Showsq( 0 );
- add( J, One, J );
- ErrCnt[ErrKind] += 1;
- printf("sqrt of " );
- mul( X, X, t );
- show( t );
- printf( "minus " );
- show( X );
- printf( "equals " );
- mul( OneUlp, SqEr, t );
- show( t );
- printf("\tinstead of correct value 0 .\n");
- }
- }
- /* NewD */
- NewD()
- {
- mul( Z1, Q, X );
- /*X = FLOOR(Half - X / Radix) * Radix + X;*/
- div( Radix, X, t );
- sub( t, Half, t );
- FLOOR( t, t );
- mul( t, Radix, t );
- add( t, X, X );
- /*Q = (Q - X * Z) / Radix + X * X * (D / Radix);*/
- mul( X, Z, t );
- sub( t, Q, t );
- div( Radix, t, t );
- div( Radix, D, t2 );
- mul( X, t2, t2 );
- mul( X, t2, t2 );
- add( t, t2, Q );
- /*Z = Z - Two * X * D;*/
- mul( Two, X, t );
- mul( t, D, t );
- sub( t, Z, Z );
- if( cmp(Z,Zero) <= 0)
- {
- neg(Z);
- neg(Z1);
- }
- mul( Radix, D, D );
- }
- /* SR3750 */
- SR3750()
- {
- sub( Radix, X, t );
- sub( Radix, Z2, t2 );
- k = 0;
- if( cmp(t,t2) < 0 )
- k = 1;
- sub( Z2, X, t );
- sub( Z2, W, t2 );
- if( cmp(t,t2) > 0 )
- k = 1;
- /*if (! ((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2))) {*/
- if( k == 0 )
- {
- I = I + 1;
- mul( X, D, X2 );
- mov( X2, Sqarg );
- SQRT( X2, X2 );
- /*Y2 = (X2 - Z2) - (Y - Z2);*/
- sub( Z2, X2, Y2 );
- sub( Z2, Y, t );
- sub( t, Y2, Y2 );
- sub( Half, Y, X2 );
- div( X2, X8, X2 );
- mul( Half, X2, t );
- mul( t, X2, t );
- sub( t, X2, X2 );
- /*SqEr = (Y2 + Half) + (Half - X2);*/
- add( Y2, Half, SqEr );
- sub( X2, Half, t );
- add( t, SqEr, SqEr );
- Showsq( -1 );
- sub( X2, Y2, SqEr );
- Showsq( 1 );
- }
- }
- /* IsYeqX */
- IsYeqX()
- {
- if( cmp(Y,X) != 0 )
- {
- if (N <= 0)
- {
- if( (cmp(Z,Zero) == 0) && (cmp(Q,Zero) <= 0) )
- printf("WARNING: computing\n");
- else
- {
- ErrCnt[Defect] += 1;
- printf( "computing\n");
- }
- show( Z );
- printf( "\tto the power " );
- show( Q );
- printf("\tyielded " );
- show( Y );
- printf("\twhich compared unequal to correct " );
- show( X );
- sub( X, Y, t );
- printf("\t\tthey differ by " );
- show( t );
- }
- N = N + 1; /* ... count discrepancies. */
- }
- }
- /* SR3980 */
- SR3980()
- {
- long li;
- do
- {
- /*Q = (FLOAT) I;*/
- li = I;
- LTOF( &li, Q );
- POW( Z, Q, Y );
- IsYeqX();
- if(++I > M)
- break;
- mul( Z, X, X );
- }
- while( cmp(X,W) < 0 );
- }
- /* PrintIfNPositive */
- PrintIfNPositive()
- {
- if(N > 0)
- printf("Similar discrepancies have occurred %d times.\n", N);
- }
- /* TstPtUf */
- TstPtUf()
- {
- N = 0;
- if( cmp(Z,Zero) != 0)
- {
- printf( "Z = " );
- show(Z);
- printf("Since comparison denies Z = 0, evaluating ");
- printf("(Z + Z) / Z should be safe.\n");
- sigsave = sigfpe;
- if (setjmp(ovfl_buf))
- goto very_serious;
- add( Z, Z, Q9 );
- div( Z, Q9, Q9 );
- printf("What the machine gets for (Z + Z) / Z is " );
- show( Q9 );
- sub( Two, Q9, t );
- FABS(t);
- mul( Radix, U2, t2 );
- if( cmp(t,t2) < 0 )
- {
- printf("This is O.K., provided Over/Underflow");
- printf(" has NOT just been signaled.\n");
- }
- else
- {
- if( (cmp(Q9,One) < 0) || (cmp(Q9,Two) > 0) )
- {
- very_serious:
- N = 1;
- ErrCnt [Serious] = ErrCnt [Serious] + 1;
- printf("This is a VERY SERIOUS DEFECT!\n");
- }
- else
- {
- N = 1;
- ErrCnt[Defect] += 1;
- printf("This is a DEFECT!\n");
- }
- }
- mul( Z, One, V9 );
- mov( V9, Random1 );
- mul( One, Z, V9 );
- mov( V9, Random2 );
- div( One, Z, V9 );
- if( (cmp(Z,Random1) == 0) && (cmp(Z,Random2) == 0)
- && (cmp(Z,V9) == 0) )
- {
- if (N > 0)
- Pause();
- }
- else
- {
- N = 1;
- ErrCnt[Defect] += 1;
- printf( "What prints as Z = ");
- show( Z );
- printf( "\tcompares different from " );
- if( cmp(Z,Random1) != 0)
- {
- printf("Z * 1 = " );
- show( Random1 );
- }
- if( (cmp(Z,Random2) != 0)
- || (cmp(Random2,Random1) != 0) )
- {
- printf("1 * Z == " );
- show( Random2 );
- }
- if( cmp(Z,V9) != 0 )
- {
- printf("Z / 1 = " );
- show( V9 );
- }
- if( cmp(Random2,Random1) != 0 )
- {
- ErrCnt[Defect] += 1;
- printf( "Multiplication does not commute!\n");
- printf("\tComparison alleges that 1 * Z = " );
- show(Random2);
- printf("\tdiffers from Z * 1 = " );
- show(Random1);
- }
- Pause();
- }
- }
- }
- Pause()
- {
- }
- Sign( x, y )
- FSIZE *x, *y;
- {
- if( cmp( x, Zero ) < 0 )
- {
- mov( One, y );
- neg( y );
- }
- else
- {
- mov( One, y );
- }
- }
- sqtest()
- {
- printf("\nRunning test of square root(x).\n");
- RSqrt = Other;
- k = 0;
- SQRT( Zero, t );
- k |= cmp( Zero, t );
- mov( Zero, t );
- neg(t);
- SQRT( t, t2 );
- k |= cmp( t, t2 );
- SQRT( One, t );
- k |= cmp( One, t );
- if( k != 0 )
- {
- ErrCnt[Failure] += 1;
- printf( "Square root of 0.0, -0.0 or 1.0 wrong\n");
- }
- mov( Zero, MinSqEr );
- mov( Zero, MaxSqEr );
- mov( Zero, J );
- mov( Radix, X );
- mov( U2, OneUlp );
- SqXMinX( Serious );
- mov( BInvrse, X );
- mul( BInvrse, U1, OneUlp );
- SqXMinX( Serious );
- mov( U1, X );
- mul( U1, U1, OneUlp );
- SqXMinX( Serious );
- if( cmp(J,Zero) != 0)
- Pause();
- printf("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials);
- mov( Zero, J );
- mov( Two, X );
- mov( Radix, Y );
- if( cmp(Radix,One) != 0 )
- {
- lngint = NoTrials;
- LTOF( &lngint, t );
- FTOL( t, &lng2, X );
- if( lngint != lng2 )
- {
- printf( "Integer conversion error\n" );
- exit(1);
- }
- do
- {
- mov( Y, X );
- mul( Radix, Y, Y );
- sub( X, Y, t2 );
- }
- while( ! (cmp(t2,t) >= 0) );
- }
- mul( X, U2, OneUlp );
- I = 1;
- while(I < 10)
- {
- add( X, One, X );
- SqXMinX( Defect );
- if( cmp(J,Zero) > 0 )
- break;
- I = I + 1;
- }
- printf("Test for sqrt monotonicity.\n");
- I = - 1;
- mov( BMinusU2, X );
- mov( Radix, Y );
- mul( Radix, U2, Z );
- add( Radix, Z, Z );
- NotMonot = False;
- Monot = False;
- while( ! (NotMonot || Monot))
- {
- I = I + 1;
- SQRT(X, X);
- SQRT(Y,Q);
- SQRT(Z,Z);
- if( (cmp(X,Q) > 0) || (cmp(Q,Z) > 0) )
- NotMonot = True;
- else
- {
- add( Q, Half, Q );
- FLOOR( Q, Q );
- mul( Q, Q, t );
- if( (I > 0) || (cmp(Radix,t) == 0) )
- Monot = True;
- else if (I > 0)
- {
- if(I > 1)
- Monot = True;
- else
- {
- mul( Y, BInvrse, Y );
- sub( U1, Y, X );
- add( Y, U1, Z );
- }
- }
- else
- {
- mov( Q, Y );
- sub( U2, Y, X );
- add( Y, U2, Z );
- }
- }
- }
- if( Monot )
- printf("sqrt has passed a test for Monotonicity.\n");
- else
- {
- ErrCnt[Defect] += 1;
- printf("sqrt(X) is non-monotonic for X near " );
- show(Y);
- }
- /*=============================================*/
- Milestone = 80;
- /*=============================================*/
- add( MinSqEr, Half, MinSqEr );
- sub( Half, MaxSqEr, MaxSqEr);
- /*Y = (SQRT(One + U2) - One) / U2;*/
- add( One, U2, Sqarg );
- SQRT( Sqarg, Y );
- sub( One, Y, Y );
- div( U2, Y, Y );
- /*SqEr = (Y - One) + U2 / Eight;*/
- sub( One, Y, t );
- div( Eight, U2, SqEr );
- add( t, SqEr, SqEr );
- Showsq( 1 );
- div( Eight, U2, SqEr );
- add( Y, SqEr, SqEr );
- Showsq( -1 );
- /*Y = ((SQRT(F9) - U2) - (One - U2)) / U1;*/
- mov( F9, Sqarg );
- SQRT( Sqarg, Y );
- sub( U2, Y, Y );
- sub( U2, One, t );
- sub( t, Y, Y );
- div( U1, Y, Y );
- div( Eight, U1, SqEr );
- add( Y, SqEr, SqEr );
- Showsq( 1 );
- /*SqEr = (Y + One) + U1 / Eight;*/
- div( Eight, U1, t );
- add( Y, One, SqEr );
- add( SqEr, t, SqEr );
- Showsq( -1 );
- mov( U2, OneUlp );
- mov( OneUlp, X );
- for( Indx = 1; Indx <= 3; ++Indx)
- {
- /*Y = SQRT((X + U1 + X) + F9);*/
- add( X, U1, Y );
- add( Y, X, Y );
- add( Y, F9, Y );
- mov( Y, Sqarg );
- SQRT( Sqarg, Y );
- /*Y = ((Y - U2) - ((One - U2) + X)) / OneUlp;*/
- sub( U2, One, t );
- add( t, X, t );
- sub( U2, Y, Y );
- sub( t, Y, Y );
- div( OneUlp, Y, Y );
- /*Z = ((U1 - X) + F9) * Half * X * X / OneUlp;*/
- sub( X, U1, t );
- add( t, F9, t );
- mul( t, Half, t );
- mul( t, X, t );
- mul( t, X, t );
- div( OneUlp, t, Z );
- add( Y, Half, SqEr );
- add( SqEr, Z, SqEr );
- Showsq( -1 );
- sub( Half, Y, SqEr );
- add( SqEr, Z, SqEr );
- Showsq( 1 );
- if(((Indx == 1) || (Indx == 3)))
- {
- /*X = OneUlp * Sign (X) * FLOOR(Eight / (Nine * SQRT(OneUlp)));*/
- mov( OneUlp, Sqarg );
- SQRT( Sqarg, t );
- mul( Nine, t, t );
- div( t, Eight, t );
- FLOOR( t, t );
- Sign( X, t2 );
- mul( t2, t, t );
- mul( OneUlp, t, X );
- }
- else
- {
- mov( U1, OneUlp );
- mov( OneUlp, X );
- neg( X );
- }
- }
- /*=============================================*/
- Milestone = 85;
- /*=============================================*/
- SqRWrng = False;
- Anomaly = False;
- if( cmp(Radix,One) != 0 )
- {
- printf("Testing whether sqrt is rounded or chopped.\n");
- /*D = FLOOR(Half + POW(Radix, One + Precision - FLOOR(Precision)));*/
- FLOOR( Precision, t2 );
- add( One, Precision, t );
- sub( t2, t, t );
- POW( Radix, t, D );
- add( Half, D, D );
- FLOOR( D, D );
- /* ... == Radix^(1 + fract) if (Precision == Integer + fract. */
- div( Radix, D, X );
- div( A1, D, Y );
- FLOOR( X, t );
- FLOOR( Y, t2 );
- if( (cmp(X,t) != 0) || (cmp(Y,t2) != 0) )
- {
- Anomaly = True;
- printf( "Anomaly 1\n" );
- }
- else
- {
- mov( Zero, X );
- mov( X, Z2 );
- mov( One, Y );
- mov( Y, Y2 );
- sub( One, Radix, Z1 );
- mul( Four, D, FourD );
- do
- {
- if( cmp(Y2,Z2) >0 )
- {
- mov( Radix, Q );
- mov( Y, YY1 );
- do
- {
- /*X1 = FABS(Q + FLOOR(Half - Q / YY1) * YY1);*/
- div( YY1, Q, t );
- sub( t, Half, t );
- FLOOR( t, t );
- mul( t, YY1, t );
- add( Q, t, X1 );
- FABS( X1 );
- mov( YY1, Q );
- mov( X1, YY1 );
- }
- while( ! (cmp(X1,Zero) <= 0) );
- if( cmp(Q,One) <= 0 )
- {
- mov( Y2, Z2 );
- mov( Y, Z );
- }
- }
- add( Y, Two, Y );
- add( X, Eight, X );
- add( Y2, X, Y2 );
- if( cmp(Y2,FourD) >= 0 )
- sub( FourD, Y2, Y2 );
- }
- while( ! (cmp(Y,D) >= 0) );
- sub( Z2, FourD, X8 );
- mul( Z, Z, Q );
- add( X8, Q, Q );
- div( FourD, Q, Q );
- div( Eight, X8, X8 );
- FLOOR( Q, t );
- if( cmp(Q,t) != 0 )
- {
- Anomaly = True;
- printf( "Anomaly 2\n" );
- }
- else
- {
- Break = False;
- do
- {
- mul( Z1, Z, X );
- /*X = X - FLOOR(X / Radix) * Radix;*/
- div( Radix, X, t );
- FLOOR( t, t );
- mul( t, Radix, t );
- sub( t, X, X );
- if( cmp(X,One) == 0 )
- Break = True;
- else
- sub( One, Z1, Z1 );
- }
- while( ! (Break || (cmp(Z1,Zero) <= 0)) );
- if( (cmp(Z1,Zero) <= 0) && (! Break))
- {
- printf( "Anomaly 3\n" );
- Anomaly = True;
- }
- else
- {
- if( cmp(Z1,RadixD2) > 0)
- sub( Radix, Z1, Z1 );
- do
- {
- NewD();
- mul( U2, D, t );
- }
- while( ! (cmp(t,F9) >= 0) );
- mul( D, Radix, t );
- sub( D, t, t );
- sub( D, W, t2 );
- if (cmp(t,t2) != 0 )
- {
- printf( "Anomaly 4\n" );
- Anomaly = True;
- }
- else
- {
- mov( D, Z2 );
- I = 0;
- add( One, Z, t );
- mul( t, Half, t );
- add( D, t, Y );
- add( D, Z, X );
- add( X, Q, X );
- SR3750();
- sub( Z, One, t );
- mul( t, Half, t );
- add( D, t, Y );
- add( Y, D, Y );
- sub( Z, D, X );
- add( X, D, X );
- add( X, Q, t );
- add( t, X, X );
- SR3750();
- NewD();
- sub( Z2, D, t );
- sub( Z2, W, t2 );
- if(cmp(t,t2) != 0 )
- {
- printf( "Anomaly 5\n" );
- Anomaly = True;
- }
- else
- {
- /*Y = (D - Z2) + (Z2 + (One - Z) * Half);*/
- sub( Z, One, t );
- mul( t, Half, t );
- add( Z2, t, t );
- sub( Z2, D, Y );
- add( Y, t, Y );
- /*X = (D - Z2) + (Z2 - Z + Q);*/
- sub( Z, Z2, t );
- add( t, Q, t );
- sub( Z2, D, X );
- add( X, t, X );
- SR3750();
- add( One, Z, Y );
- mul( Y, Half, Y );
- mov( Q, X );
- SR3750();
- if(I == 0)
- {
- printf( "Anomaly 6\n" );
- Anomaly = True;
- }
- }
- }
- }
- }
- }
- if ((I == 0) || Anomaly)
- {
- ErrCnt[Failure] += 1;
- printf( "Anomalous arithmetic with Integer < \n");
- printf("Radix^Precision = " );
- show( W );
- printf(" fails test whether sqrt rounds or chops.\n");
- SqRWrng = True;
- }
- }
- if(! Anomaly)
- {
- if(! ((cmp(MinSqEr,Zero) < 0) || (cmp(MaxSqEr,Zero) > 0))) {
- RSqrt = Rounded;
- printf("Square root appears to be correctly rounded.\n");
- }
- else
- {
- k = 0;
- add( MaxSqEr, U2, t );
- sub( Half, U2, t2 );
- if( cmp(t,t2) > 0 )
- k = 1;
- if( cmp( MinSqEr, Half ) > 0 )
- k = 1;
- add( MinSqEr, Radix, t );
- if( cmp( t, Half ) < 0 )
- k = 1;
- if( k == 1 )
- SqRWrng = True;
- else
- {
- RSqrt = Chopped;
- printf("Square root appears to be chopped.\n");
- }
- }
- }
- if( SqRWrng )
- {
- printf("Square root is neither chopped nor correctly rounded.\n");
- printf("Observed errors run from " );
- sub( Half, MinSqEr, t );
- show( t );
- printf("\tto " );
- add( Half, MaxSqEr, t );
- show( t );
- printf( "ulps.\n" );
- sub( MinSqEr, MaxSqEr, t );
- mul( Radix, Radix, t2 );
- if( cmp( t, t2 ) >= 0 )
- {
- ErrCnt[Serious] += 1;
- printf( "sqrt gets too many last digits wrong\n");
- }
- }
- }
- Showsq( arg )
- int arg;
- {
- k = 0;
- if( arg <= 0 )
- {
- if( cmp(SqEr,MinSqEr) < 0 )
- {
- k = 1;
- mov( SqEr, MinSqEr );
- }
- }
- if( arg >= 0 )
- {
- if( cmp(SqEr,MaxSqEr) > 0 )
- {
- k = 2;
- mov( SqEr, MaxSqEr );
- }
- }
- #if DEBUG
- if( k != 0 )
- {
- printf( "Square root of " );
- show( arg );
- printf( "\tis in error by " );
- show( SqEr );
- }
- #endif
- }
- pow1test()
- {
- /*=============================================*/
- Milestone = 90;
- /*=============================================*/
- Pause();
- printf("Testing powers Z^i for small Integers Z and i.\n");
- N = 0;
- /* ... test powers of zero. */
- I = 0;
- mov( Zero, Z );
- neg(Z);
- M = 3;
- Break = False;
- do
- {
- mov( One, X );
- SR3980();
- if(I <= 10)
- {
- I = 1023;
- SR3980();
- }
- if( cmp(Z,MinusOne) == 0 )
- Break = True;
- else
- {
- mov( MinusOne, Z );
- PrintIfNPositive();
- N = 0;
- /* .. if(-1)^N is invalid, replace MinusOne by One. */
- I = - 4;
- }
- }
- while( ! Break );
- PrintIfNPositive();
- N1 = N;
- N = 0;
- mov( A1, Z );
- /*M = FLOOR(Two * LOG(W) / LOG(A1));*/
- LOG( W, t );
- mul( Two, t, t );
- FLOOR( t, t );
- LOG( A1, t2 );
- div( t2, t, t );
- FTOL( t, &lngint, t2 );
- M = lngint;
- Break = False;
- do
- {
- mov( Z, X );
- I = 1;
- SR3980();
- if( cmp(Z,AInvrse) == 0 )
- Break = True;
- else
- mov( AInvrse, Z );
- }
- while( ! (Break) );
- /*=============================================*/
- Milestone = 100;
- /*=============================================*/
- /* Powers of Radix have been tested, */
- /* next try a few primes */
- M = NoTrials;
- mov( Three, Z );
- do
- {
- mov( Z, X );
- I = 1;
- SR3980();
- do
- {
- add( Z, Two, Z );
- div( Three, Z, t );
- FLOOR( t, t );
- mul( Three, t, t );
- }
- while( cmp(t,Z) == 0 );
- mul( Eight, Three, t );
- }
- while( cmp(Z,t) < 0 );
- if(N > 0)
- {
- printf("Errors like this may invalidate financial calculations\n");
- printf("\tinvolving interest rates.\n");
- }
- PrintIfNPositive();
- N += N1;
- if(N == 0)
- printf("... no discrepancies found.\n");
- if(N > 0)
- Pause();
- else printf("\n");
- }
- pow2test()
- {
- printf("\n");
- /* ...calculate Exp2 == exp(2) == 7.38905 60989 30650 22723 04275-... */
- mov( Zero, X );
- mov( Two, t2 ); /*I = 2;*/
- mul( Two, Three, Y );
- mov( Zero, Q );
- N = 0;
- do
- {
- mov( X, Z );
- add( t2, One, t2 ); /*I = I + 1;*/
- add( t2, t2, t );
- div( t, Y, Y ); /*Y = Y / (I + I);*/
- add( Y, Q, R );
- add( Z, R, X );
- sub( X, Z, Q );
- add( Q, R, Q );
- }
- while( cmp(X,Z) > 0 );
- /*Z = (OneAndHalf + One / Eight) + X / (OneAndHalf * ThirtyTwo);*/
- div( Eight, One, t );
- add( OneAndHalf, t, Z );
- mul( OneAndHalf, ThirtyTwo, t );
- div( t, X, t );
- add( Z, t, Z );
- mul( Z, Z, X );
- mul( X, X, Exp2 );
- mov( F9, X );
- sub( U1, X, Y );
- printf("Testing X^((X + 1) / (X - 1)) vs. exp(2) = " );
- show( Exp2 );
- printf( "\tas X -> 1.\n" );
- for(I = 1;;)
- {
- sub( BInvrse, X, Z );
- /*Z = (X + One) / (Z - (One - BInvrse));*/
- add( X, One, t2 );
- sub( BInvrse, One, t );
- sub( t, Z, t );
- div( t, t2, Z );
- POW( X, Z, Sqarg );
- sub( Exp2, Sqarg, Q );
- mov( Q, t );
- FABS( t );
- mul( TwoForty, U2, t2 );
- if( cmp( t, t2 ) > 0 )
- {
- N = 1;
- sub( BInvrse, X, V9 );
- sub( BInvrse, One, t );
- sub( t, V9, V9 );
- ErrCnt[Defect] += 1;
- printf( "Calculated " );
- show( Sqarg );
- printf(" for \t(1 + " );
- show( V9 );
- printf( "\tto the power " );
- show( Z );
- printf("\tdiffers from correct value by " );
- show( Q );
- printf("\tThis much error may spoil financial\n");
- printf("\tcalculations involving tiny interest rates.\n");
- break;
- }
- else
- {
- sub( X, Y, Z );
- mul( Z, Two, Z );
- add( Z, Y, Z );
- mov( Y, X );
- mov( Z, Y );
- sub( F9, X, Z );
- mul( Z, Z, Z );
- add( Z, One, Z );
- if( (cmp(Z,One) > 0) && (I < NoTrials) )
- I++;
- else
- {
- if( cmp(X,One) > 0 )
- {
- if(N == 0)
- printf("Accuracy seems adequate.\n");
- break;
- }
- else
- {
- add( One, U2, X );
- add( U2, U2, Y );
- add( X, Y, Y );
- I = 1;
- }
- }
- }
- }
- /*=============================================*/
- Milestone = 150;
- /*=============================================*/
- printf("Testing powers Z^Q at four nearly extreme values.\n");
- N = 0;
- mov( A1, Z );
- /*Q = FLOOR(Half - LOG(C) / LOG(A1));*/
- LOG( C, t );
- LOG( A1, t2 );
- div( t2, t, t );
- sub( t, Half, t );
- FLOOR( t, Q );
- Break = False;
- do
- {
- mov( CInvrse, X );
- POW( Z, Q, Y );
- IsYeqX();
- neg(Q);
- mov( C, X );
- POW( Z, Q, Y );
- IsYeqX();
- if( cmp(Z,One) < 0 )
- Break = True;
- else
- mov( AInvrse, Z );
- }
- while( ! (Break));
- PrintIfNPositive();
- if(N == 0)
- printf(" ... no discrepancies found.\n");
- printf("\n");
- }
|