| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 | /* @(#)k_tan.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $";#endif/* __kernel_tan( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm *	1. Since tan(-x) = -tan(x), we need only to consider positive x. *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. *	3. tan(x) is approximated by a odd polynomial of degree 27 on *	   [0,0.67434] *		  	         3             27 *	   	tan(x) ~ x + T1*x + ... + T13*x *	   where * * 	        |tan(x)         2     4            26   |     -59.2 * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2 * 	        |  x 					| * *	   Note: tan(x+y) = tan(x) + tan'(x)*y *		          ~ tan(x) + (1+x*x)*y *	   Therefore, for better accuracy in computing tan(x+y), let *		     3      2      2       2       2 *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) *	   then *		 		    3    2 *		tan(x+y) = x + (T1*x + (x *(r+y)+y)) * *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */#include "math.h"#include "math_private.h"libm_hidden_proto(fabs)#ifdef __STDC__static const double#elsestatic double#endifone   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */T[] =  {  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */};#ifdef __STDC__	double attribute_hidden __kernel_tan(double x, double y, int iy)#else	double attribute_hidden __kernel_tan(x, y, iy)	double x,y; int iy;#endif{	double z,r,v,w,s;	int32_t ix,hx;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	/* high word of |x| */	if(ix<0x3e300000)			/* x < 2**-28 */	    {if((int)x==0) {			/* generate inexact */	        u_int32_t low;		GET_LOW_WORD(low,x);		if(((ix|low)|(iy+1))==0) return one/fabs(x);		else return (iy==1)? x: -one/x;	    }	    }	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */	    if(hx<0) {x = -x; y = -y;}	    z = pio4-x;	    w = pio4lo-y;	    x = z+w; y = 0.0;	}	z	=  x*x;	w 	=  z*z;    /* Break x^5*(T[1]+x^2*T[2]+...) into     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))     */	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));	s = z*x;	r = y + z*(s*(r+v)+y);	r += T[0]*s;	w = x+r;	if(ix>=0x3FE59428) {	    v = (double)iy;	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));	}	if(iy==1) return w;	else {		/* if allow error up to 2 ulp,			   simply return -1.0/(x+r) here */     /*  compute -1.0/(x+r) accurately */	    double a,t;	    z  = w;	    SET_LOW_WORD(z,0);	    v  = r-(z - x); 	/* z+v = r+x */	    t = a  = -1.0/w;	/* a = -1.0/w */	    SET_LOW_WORD(t,0);	    s  = 1.0+t*z;	    return t+a*(s+t*v);	}}
 |