| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 | /*							igami() * *      Inverse of complemented imcomplete gamma integral * * * * SYNOPSIS: * * double a, x, p, igami(); * * x = igami( a, p ); * * DESCRIPTION: * * Given p, the function finds x such that * *  igamc( a, x ) = p. * * Starting with the approximate value * *         3 *  x = a t * *  where * *  t = 1 - d - ndtri(p) sqrt(d) *  * and * *  d = 1/9a, * * the routine performs up to 10 Newton iterations to find the * root of igamc(a,x) - p = 0. * * ACCURACY: * * Tested at random a, p in the intervals indicated. * *                a        p                      Relative error: * arithmetic   domain   domain     # trials      peak         rms *    IEEE     0.5,100   0,0.5       100000       1.0e-14     1.7e-15 *    IEEE     0.01,0.5  0,0.5       100000       9.0e-14     3.4e-15 *    IEEE    0.5,10000  0,0.5        20000       2.3e-13     3.8e-14 *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier*/#include <math.h>extern double MACHEP, MAXNUM, MAXLOG, MINLOG;#ifdef ANSIPROTextern double igamc ( double, double );extern double ndtri ( double );extern double exp ( double );extern double fabs ( double );extern double log ( double );extern double sqrt ( double );extern double lgam ( double );#elsedouble igamc(), ndtri(), exp(), fabs(), log(), sqrt(), lgam();#endifdouble igami( a, y0 )double a, y0;{double x0, x1, x, yl, yh, y, d, lgm, dithresh;int i, dir;/* bound the solution */x0 = MAXNUM;yl = 0;x1 = 0;yh = 1.0;dithresh = 5.0 * MACHEP;/* approximation to inverse function */d = 1.0/(9.0*a);y = ( 1.0 - d - ndtri(y0) * sqrt(d) );x = a * y * y * y;lgm = lgam(a);for( i=0; i<10; i++ )	{	if( x > x0 || x < x1 )		goto ihalve;	y = igamc(a,x);	if( y < yl || y > yh )		goto ihalve;	if( y < y0 )		{		x0 = x;		yl = y;		}	else		{		x1 = x;		yh = y;		}/* compute the derivative of the function at this point */	d = (a - 1.0) * log(x) - x - lgm;	if( d < -MAXLOG )		goto ihalve;	d = -exp(d);/* compute the step to the next approximation of x */	d = (y - y0)/d;	if( fabs(d/x) < MACHEP )		goto done;	x = x - d;	}/* Resort to interval halving if Newton iteration did not converge. */ihalve:d = 0.0625;if( x0 == MAXNUM )	{	if( x <= 0.0 )		x = 1.0;	while( x0 == MAXNUM )		{		x = (1.0 + d) * x;		y = igamc( a, x );		if( y < y0 )			{			x0 = x;			yl = y;			break;			}		d = d + d;		}	}d = 0.5;dir = 0;for( i=0; i<400; i++ )	{	x = x1  +  d * (x0 - x1);	y = igamc( a, x );	lgm = (x0 - x1)/(x1 + x0);	if( fabs(lgm) < dithresh )		break;	lgm = (y - y0)/y0;	if( fabs(lgm) < dithresh )		break;	if( x <= 0.0 )		break;	if( y >= y0 )		{		x1 = x;		yh = y;		if( dir < 0 )			{			dir = 0;			d = 0.5;			}		else if( dir > 1 )			d = 0.5 * d + 0.5; 		else			d = (y0 - yl)/(yh - yl);		dir += 1;		}	else		{		x0 = x;		yl = y;		if( dir > 0 )			{			dir = 0;			d = 0.5;			}		else if( dir < -1 )			d = 0.5 * d;		else			d = (y0 - yl)/(yh - yl);		dir -= 1;		}	}if( x == 0.0 )	mtherr( "igami", UNDERFLOW );done:return( x );}
 |