| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 | /*							cbrtf.c * *	Cube root * * * * SYNOPSIS: * * float x, y, cbrtf(); * * y = cbrtf( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument.  A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%.  Then Newton's * iteration is used to converge to an accurate result. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,1e38      100000      7.6e-8      2.7e-8 * *//*							cbrt.c  *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static float CBRT2 = 1.25992104989487316477;static float CBRT4 = 1.58740105196819947475;float frexpf(float, int *), ldexpf(float, int);float cbrtf( float xx ){int e, rem, sign;float x, z;x = xx;if( x == 0 )	return( 0.0 );if( x > 0 )	sign = 1;else	{	sign = -1;	x = -x;	}z = x;/* extract power of 2, leaving * mantissa between 0.5 and 1 */x = frexpf( x, &e );/* Approximate cube root of number between .5 and 1, * peak relative error = 9.2e-6 */x = (((-0.13466110473359520655053  * x      + 0.54664601366395524503440 ) * x      - 0.95438224771509446525043 ) * x      + 1.1399983354717293273738  ) * x      + 0.40238979564544752126924;/* exponent divided by 3 */if( e >= 0 )	{	rem = e;	e /= 3;	rem -= 3*e;	if( rem == 1 )		x *= CBRT2;	else if( rem == 2 )		x *= CBRT4;	}/* argument less than 1 */else	{	e = -e;	rem = e;	e /= 3;	rem -= 3*e;	if( rem == 1 )		x /= CBRT2;	else if( rem == 2 )		x /= CBRT4;	e = -e;	}/* multiply by power of 2 */x = ldexpf( x, e );/* Newton iteration */x -= ( x - (z/(x*x)) ) * 0.333333333333;if( sign < 0 )	x = -x;return(x);}
 |