| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | /*							dawsnf.c * *	Dawson's Integral * * * * SYNOPSIS: * * float x, y, dawsnf(); * * y = dawsnf( x ); * * * * DESCRIPTION: * * Approximates the integral * *                             x *                             - *                      2     | |        2 *  dawsn(x)  =  exp( -x  )   |    exp( t  ) dt *                          | | *                           - *                           0 * * Three different rational approximations are employed, for * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,10        50000       4.4e-7      6.3e-8 * * *//*							dawsn.c *//*Cephes Math Library Release 2.1:  January, 1989Copyright 1984, 1987, 1989 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>/* Dawson's integral, interval 0 to 3.25 */static float AN[10] = { 1.13681498971755972054E-11, 8.49262267667473811108E-10, 1.94434204175553054283E-8, 9.53151741254484363489E-7, 3.07828309874913200438E-6, 3.52513368520288738649E-4,-8.50149846724410912031E-4, 4.22618223005546594270E-2,-9.17480371773452345351E-2, 9.99999999999999994612E-1,};static float AD[11] = { 2.40372073066762605484E-11, 1.48864681368493396752E-9, 5.21265281010541664570E-8, 1.27258478273186970203E-6, 2.32490249820789513991E-5, 3.25524741826057911661E-4, 3.48805814657162590916E-3, 2.79448531198828973716E-2, 1.58874241960120565368E-1, 5.74918629489320327824E-1, 1.00000000000000000539E0,};/* interval 3.25 to 6.25 */static float BN[11] = { 5.08955156417900903354E-1,-2.44754418142697847934E-1, 9.41512335303534411857E-2,-2.18711255142039025206E-2, 3.66207612329569181322E-3,-4.23209114460388756528E-4, 3.59641304793896631888E-5,-2.14640351719968974225E-6, 9.10010780076391431042E-8,-2.40274520828250956942E-9, 3.59233385440928410398E-11,};static float BD[10] = {/*  1.00000000000000000000E0,*/-6.31839869873368190192E-1, 2.36706788228248691528E-1,-5.31806367003223277662E-2, 8.48041718586295374409E-3,-9.47996768486665330168E-4, 7.81025592944552338085E-5,-4.55875153252442634831E-6, 1.89100358111421846170E-7,-4.91324691331920606875E-9, 7.18466403235734541950E-11,};/* 6.25 to infinity */static float CN[5] = {-5.90592860534773254987E-1, 6.29235242724368800674E-1,-1.72858975380388136411E-1, 1.64837047825189632310E-2,-4.86827613020462700845E-4,};static float CD[5] = {/* 1.00000000000000000000E0,*/-2.69820057197544900361E0, 1.73270799045947845857E0,-3.93708582281939493482E-1, 3.44278924041233391079E-2,-9.73655226040941223894E-4,};extern float PIF, MACHEPF;#define fabsf(x) ( (x) < 0 ? -(x) : (x) )#ifdef ANSICfloat polevlf(float, float *, int);float p1evlf(float, float *, int);#elsefloat polevlf(), p1evlf();#endiffloat dawsnf( float xxx ){float xx, x, y;int sign;xx = xxx;sign = 1;if( xx < 0.0 )	{	sign = -1;	xx = -xx;	}if( xx < 3.25 )	{	x = xx*xx;	y = xx * polevlf( x, AN, 9 )/polevlf( x, AD, 10 );	return( sign * y );	}x = 1.0/(xx*xx);if( xx < 6.25 )	{	y = 1.0/xx + x * polevlf( x, BN, 10) / (p1evlf( x, BD, 10) * xx);	return( sign * 0.5 * y );	}if( xx > 1.0e9 )	return( (sign * 0.5)/xx );/* 6.25 to infinity */y = 1.0/xx + x * polevlf( x, CN, 4) / (p1evlf( x, CD, 5) * xx);return( sign * 0.5 * y );}
 |