| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 | /*							ellpkf.c * *	Complete elliptic integral of the first kind * * * * SYNOPSIS: * * float m1, y, ellpkf(); * * y = ellpkf( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * *            pi/2 *             - *            | | *            |           dt * K(m)  =    |    ------------------ *            |                   2 *          | |    sqrt( 1 - m sin t ) *           - *            0 * * where m = 1 - m1, using the approximation * *     P(x)  -  log x Q(x). * * The argument m1 is used rather than m so that the logarithmic * singularity at m = 1 will be shifted to the origin; this * preserves maximum accuracy. * * K(0) = pi/2. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE       0,1        30000       1.3e-7      3.4e-8 * * ERROR MESSAGES: * *   message         condition      value returned * ellpkf domain      x<0, x>1           0.0 * *//*							ellpk.c *//*Cephes Math Library, Release 2.0:  April, 1987Copyright 1984, 1987 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static float P[] ={ 1.37982864606273237150E-4, 2.28025724005875567385E-3, 7.97404013220415179367E-3, 9.85821379021226008714E-3, 6.87489687449949877925E-3, 6.18901033637687613229E-3, 8.79078273952743772254E-3, 1.49380448916805252718E-2, 3.08851465246711995998E-2, 9.65735902811690126535E-2, 1.38629436111989062502E0};static float Q[] ={ 2.94078955048598507511E-5, 9.14184723865917226571E-4, 5.94058303753167793257E-3, 1.54850516649762399335E-2, 2.39089602715924892727E-2, 3.01204715227604046988E-2, 3.73774314173823228969E-2, 4.88280347570998239232E-2, 7.03124996963957469739E-2, 1.24999999999870820058E-1, 4.99999999999999999821E-1};static float C1 = 1.3862943611198906188E0; /* log(4) */extern float MACHEPF, MAXNUMF;float polevlf(float, float *, int);float p1evlf(float, float *, int);float logf(float);float ellpkf(float xx){float x;x = xx;if( (x < 0.0) || (x > 1.0) )	{	mtherr( "ellpkf", DOMAIN );	return( 0.0 );	}if( x > MACHEPF )	{	return( polevlf(x,P,10) - logf(x) * polevlf(x,Q,10) );	}else	{	if( x == 0.0 )		{		mtherr( "ellpkf", SING );		return( MAXNUMF );		}	else		{		return( C1 - 0.5 * logf(x) );		}	}}
 |