| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 | /*							fdtrf.c * *	F distribution * * * * SYNOPSIS: * * int df1, df2; * float x, y, fdtrf(); * * y = fdtrf( df1, df2, x ); * * * * DESCRIPTION: * * Returns the area from zero to x under the F density * function (also known as Snedcor's density or the * variance ratio density).  This is the density * of x = (u1/df1)/(u2/df2), where u1 and u2 are random * variables having Chi square distributions with df1 * and df2 degrees of freedom, respectively. * * The incomplete beta integral is used, according to the * formula * *	P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ). * * * The arguments a and b are greater than zero, and x * x is nonnegative. * ACCURACY: * *        Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE       0,100       5000       2.2e-5      1.1e-6 * * ERROR MESSAGES: * *   message         condition      value returned * fdtrf domain    a<0, b<0, x<0         0.0 * *//*							fdtrcf() * *	Complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * float x, y, fdtrcf(); * * y = fdtrcf( df1, df2, x ); * * * * DESCRIPTION: * * Returns the area from x to infinity under the F density * function (also known as Snedcor's density or the * variance ratio density). * * *                      inf. *                       - *              1       | |  a-1      b-1 * 1-P(x)  =  ------    |   t    (1-t)    dt *            B(a,b)  | | *                     - *                      x * * (See fdtr.c.) * * The incomplete beta integral is used, according to the * formula * *	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). * * * ACCURACY: * *        Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE       0,100       5000       7.3e-5      1.2e-5 * * ERROR MESSAGES: * *   message         condition      value returned * fdtrcf domain   a<0, b<0, x<0         0.0 * *//*							fdtrif() * *	Inverse of complemented F distribution * * * * SYNOPSIS: * * float df1, df2, x, y, fdtrif(); * * x = fdtrif( df1, df2, y ); * * * * * DESCRIPTION: * * Finds the F density argument x such that the integral * from x to infinity of the F density is equal to the * given probability y. * * This is accomplished using the inverse beta integral * function and the relations * *      z = incbi( df2/2, df1/2, y ) *      x = df2 (1-z) / (df1 z). * * Note: the following relations hold for the inverse of * the uncomplemented F distribution: * *      z = incbi( df1/2, df2/2, y ) *      x = df2 z / (df1 (1-z)). * * * * ACCURACY: * * arithmetic   domain     # trials      peak         rms *        Absolute error: *    IEEE       0,100       5000       4.0e-5      3.2e-6 *        Relative error: *    IEEE       0,100       5000       1.2e-3      1.8e-5 * * ERROR MESSAGES: * *   message         condition      value returned * fdtrif domain  y <= 0 or y > 1       0.0 *                     v < 1 * *//*Cephes Math Library Release 2.2:  July, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>#ifdef ANSICfloat incbetf(float, float, float);float incbif(float, float, float);#elsefloat incbetf(), incbif();#endiffloat fdtrcf( int ia, int ib, float xx ){float x, a, b, w;x = xx;if( (ia < 1) || (ib < 1) || (x < 0.0) )	{	mtherr( "fdtrcf", DOMAIN );	return( 0.0 );	}a = ia;b = ib;w = b / (b + a * x);return( incbetf( 0.5*b, 0.5*a, w ) );}float fdtrf( int ia, int ib, int xx ){float x, a, b, w;x = xx;if( (ia < 1) || (ib < 1) || (x < 0.0) )	{	mtherr( "fdtrf", DOMAIN );	return( 0.0 );	}a = ia;b = ib;w = a * x;w = w / (b + w);return( incbetf( 0.5*a, 0.5*b, w) );}float fdtrif( int ia, int ib, float yy ){float y, a, b, w, x;y = yy;if( (ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0) )	{	mtherr( "fdtrif", DOMAIN );	return( 0.0 );	}a = ia;b = ib;w = incbif( 0.5*b, 0.5*a, y );x = (b - b*w)/(a*w);return(x);}
 |