| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 | /*							i0f.c * *	Modified Bessel function of order zero * * * * SYNOPSIS: * * float x, y, i0(); * * y = i0f( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order zero of the * argument. * * The function is defined as i0(x) = j0( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,30        100000      4.0e-7      7.9e-8 * *//*							i0ef.c * *	Modified Bessel function of order zero, *	exponentially scaled * * * * SYNOPSIS: * * float x, y, i0ef(); * * y = i0ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order zero of the argument. * * The function is defined as i0e(x) = exp(-|x|) j0( ix ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,30        100000      3.7e-7      7.0e-8 * See i0f(). * *//*							i0.c		*//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>/* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */static float A[] ={-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,-2.67079385394061173391E-7f, 1.11738753912010371815E-6f,-4.41673835845875056359E-6f, 1.64484480707288970893E-5f,-5.75419501008210370398E-5f, 1.88502885095841655729E-4f,-5.76375574538582365885E-4f, 1.63947561694133579842E-3f,-4.32430999505057594430E-3f, 1.05464603945949983183E-2f,-2.37374148058994688156E-2f, 4.93052842396707084878E-2f,-9.49010970480476444210E-2f, 1.71620901522208775349E-1f,-3.04682672343198398683E-1f, 6.76795274409476084995E-1f};/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */static float B[] ={ 3.39623202570838634515E-9f, 2.26666899049817806459E-8f, 2.04891858946906374183E-7f, 2.89137052083475648297E-6f, 6.88975834691682398426E-5f, 3.36911647825569408990E-3f, 8.04490411014108831608E-1f}; float chbevlf(float, float *, int), expf(float), sqrtf(float);float i0f( float x ){float y;if( x < 0 )	x = -x;if( x <= 8.0f )	{	y = 0.5f*x - 2.0f;	return( expf(x) * chbevlf( y, A, 18 ) );	}return(  expf(x) * chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) );}float chbevlf(float, float *, int), expf(float), sqrtf(float);float i0ef( float x ){float y;if( x < 0 )	x = -x;if( x <= 8.0f )	{	y = 0.5f*x - 2.0f;	return( chbevlf( y, A, 18 ) );	}return(  chbevlf( 32.0f/x - 2.0f, B, 7 ) / sqrtf(x) );}
 |