| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | /*							i1f.c * *	Modified Bessel function of order one * * * * SYNOPSIS: * * float x, y, i1f(); * * y = i1f( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order one of the * argument. * * The function is defined as i1(x) = -i j1( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       100000      1.5e-6      1.6e-7 * * *//*							i1ef.c * *	Modified Bessel function of order one, *	exponentially scaled * * * * SYNOPSIS: * * float x, y, i1ef(); * * y = i1ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order one of the argument. * * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       1.5e-6      1.5e-7 * See i1(). * *//*							i1.c 2		*//*Cephes Math Library Release 2.0:  March, 1987Copyright 1985, 1987 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>/* Chebyshev coefficients for exp(-x) I1(x) / x * in the interval [0,8]. * * lim(x->0){ exp(-x) I1(x) / x } = 1/2. */static float A[] ={ 9.38153738649577178388E-9f,-4.44505912879632808065E-8f, 2.00329475355213526229E-7f,-8.56872026469545474066E-7f, 3.47025130813767847674E-6f,-1.32731636560394358279E-5f, 4.78156510755005422638E-5f,-1.61760815825896745588E-4f, 5.12285956168575772895E-4f,-1.51357245063125314899E-3f, 4.15642294431288815669E-3f,-1.05640848946261981558E-2f, 2.47264490306265168283E-2f,-5.29459812080949914269E-2f, 1.02643658689847095384E-1f,-1.76416518357834055153E-1f, 2.52587186443633654823E-1f};/* Chebyshev coefficients for exp(-x) sqrt(x) I1(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi). */static float B[] ={-3.83538038596423702205E-9f,-2.63146884688951950684E-8f,-2.51223623787020892529E-7f,-3.88256480887769039346E-6f,-1.10588938762623716291E-4f,-9.76109749136146840777E-3f, 7.78576235018280120474E-1f};/*							i1.c	*/#define fabsf(x) ( (x) < 0 ? -(x) : (x) )#ifdef ANSICfloat chbevlf(float, float *, int);float expf(float), sqrtf(float);#elsefloat chbevlf(), expf(), sqrtf();#endiffloat i1f(float xx){ float x, y, z;x = xx;z = fabsf(x);if( z <= 8.0f )	{	y = 0.5f*z - 2.0f;	z = chbevlf( y, A, 17 ) * z * expf(z);	}else	{	z = expf(z) * chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z);	}if( x < 0.0f )	z = -z;return( z );}/*							i1e()	*/float i1ef( float xx ){ float x, y, z;x = xx;z = fabsf(x);if( z <= 8.0f )	{	y = 0.5f*z - 2.0f;	z = chbevlf( y, A, 17 ) * z;	}else	{	z = chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z);	}if( x < 0.0f )	z = -z;return( z );}
 |