| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 | /*							j0f.c * *	Bessel function of order zero * * * * SYNOPSIS: * * float x, y, j0f(); * * y = j0f( x ); * * * * DESCRIPTION: * * Returns Bessel function of order zero of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval the following polynomial * approximation is used: * * *        2         2         2 * (w - r  ) (w - r  ) (w - r  ) P(w) *       1         2         3    * *            2 * where w = x  and the three r's are zeros of the function. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x R(1/x^2) - pi/4.  The function is * *   j0(x) = Modulus(x) cos( Phase(x) ). * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 2        100000      1.3e-7      3.6e-8 *    IEEE      2, 32       100000      1.9e-7      5.4e-8 * *//*							y0f.c * *	Bessel function of the second kind, order zero * * * * SYNOPSIS: * * float x, y, y0f(); * * y = y0f( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind, of order * zero, of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval a rational approximation * R(x) is employed to compute * *                  2         2         2 * y0(x)  =  (w - r  ) (w - r  ) (w - r  ) R(x)  +  2/pi ln(x) j0(x). *                 1         2         3    * * Thus a call to j0() is required.  The three zeros are removed * from R(x) to improve its numerical stability. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x S(1/x^2) - pi/4.  Then the function is * *   y0(x) = Modulus(x) sin( Phase(x) ). * * * * * ACCURACY: * *  Absolute error, when y0(x) < 1; else relative error: * * arithmetic   domain     # trials      peak         rms *    IEEE      0,  2       100000      2.4e-7      3.4e-8 *    IEEE      2, 32       100000      1.8e-7      5.3e-8 * *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1987, 1989, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static float MO[8] = {-6.838999669318810E-002f, 1.864949361379502E-001f,-2.145007480346739E-001f, 1.197549369473540E-001f,-3.560281861530129E-003f,-4.969382655296620E-002f,-3.355424622293709E-006f, 7.978845717621440E-001f};static float PH[8] = { 3.242077816988247E+001f,-3.630592630518434E+001f, 1.756221482109099E+001f,-4.974978466280903E+000f, 1.001973420681837E+000f,-1.939906941791308E-001f, 6.490598792654666E-002f,-1.249992184872738E-001f};static float YP[5] = { 9.454583683980369E-008f,-9.413212653797057E-006f, 5.344486707214273E-004f,-1.584289289821316E-002f, 1.707584643733568E-001f};float YZ1 =  0.43221455686510834878f;float YZ2 = 22.401876406482861405f;float YZ3 = 64.130620282338755553f;static float DR1 =  5.78318596294678452118f;/*static float DR2 = 30.4712623436620863991;static float DR3 = 74.887006790695183444889;*/static float JP[5] = {-6.068350350393235E-008f, 6.388945720783375E-006f,-3.969646342510940E-004f, 1.332913422519003E-002f,-1.729150680240724E-001f};extern float PIO4F;float polevlf(float, float *, int);float logf(float), sinf(float), cosf(float), sqrtf(float);float j0f( float xx ){float x, w, z, p, q, xn;if( xx < 0 )	x = -xx;else	x = xx;if( x <= 2.0f )	{	z = x * x;	if( x < 1.0e-3f )		return( 1.0f - 0.25f*z );	p = (z-DR1) * polevlf( z, JP, 4);	return( p );	}q = 1.0f/x;w = sqrtf(q);p = w * polevlf( q, MO, 7);w = q*q;xn = q * polevlf( w, PH, 7) - PIO4F;p = p * cosf(xn + x);return(p);}/*							y0() 2	*//* Bessel function of second kind, order zero	*//* Rational approximation coefficients YP[] are used for x < 6.5. * The function computed is  y0(x)  -  2 ln(x) j0(x) / pi, * whose value at x = 0 is  2 * ( log(0.5) + EUL ) / pi * = 0.073804295108687225 , EUL is Euler's constant. */static float TWOOPI =  0.636619772367581343075535f; /* 2/pi */extern float MAXNUMF;float y0f( float xx ){float x, w, z, p, q, xn;x = xx;if( x <= 2.0f )	{	if( x <= 0.0f )		{		mtherr( "y0f", DOMAIN );		return( -MAXNUMF );		}	z = x * x;/*	w = (z-YZ1)*(z-YZ2)*(z-YZ3) * polevlf( z, YP, 4);*/	w = (z-YZ1) * polevlf( z, YP, 4);	w += TWOOPI * logf(x) * j0f(x);	return( w );	}q = 1.0f/x;w = sqrtf(q);p = w * polevlf( q, MO, 7);w = q*q;xn = q * polevlf( w, PH, 7) - PIO4F;p = p * sinf(xn + x);return( p );}
 |