| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 | /*							j1f.c * *	Bessel function of order one * * * * SYNOPSIS: * * float x, y, j1f(); * * y = j1f( x ); * * * * DESCRIPTION: * * Returns Bessel function of order one of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval a polynomial approximation *        2  * (w - r  ) x P(w) *       1   *                     2  * is used, where w = x  and r is the first zero of the function. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4.  The function is * *   j0(x) = Modulus(x) cos( Phase(x) ). * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak       rms *    IEEE      0,  2       100000       1.2e-7     2.5e-8 *    IEEE      2, 32       100000       2.0e-7     5.3e-8 * * *//*							y1.c * *	Bessel function of second kind of order one * * * * SYNOPSIS: * * double x, y, y1(); * * y = y1( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind of order one * of the argument. * * The domain is divided into the intervals [0, 2] and * (2, infinity). In the first interval a rational approximation * R(x) is employed to compute * *                  2 * y0(x)  =  (w - r  ) x R(x^2)  +  2/pi (ln(x) j1(x) - 1/x) . *                 1 * * Thus a call to j1() is required. * * In the second interval, the modulus and phase are approximated * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4.  Then the function is * *   y0(x) = Modulus(x) sin( Phase(x) ). * * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak         rms *    IEEE      0,  2       100000       2.2e-7     4.6e-8 *    IEEE      2, 32       100000       1.9e-7     5.3e-8 * * (error criterion relative when |y1| > 1). * *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1987, 1989, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static float JP[5] = {-4.878788132172128E-009f, 6.009061827883699E-007f,-4.541343896997497E-005f, 1.937383947804541E-003f,-3.405537384615824E-002f};static float YP[5] = { 8.061978323326852E-009f,-9.496460629917016E-007f, 6.719543806674249E-005f,-2.641785726447862E-003f, 4.202369946500099E-002f};static float MO1[8] = { 6.913942741265801E-002f,-2.284801500053359E-001f, 3.138238455499697E-001f,-2.102302420403875E-001f, 5.435364690523026E-003f, 1.493389585089498E-001f, 4.976029650847191E-006f, 7.978845453073848E-001f};static float PH1[8] = {-4.497014141919556E+001f, 5.073465654089319E+001f,-2.485774108720340E+001f, 7.222973196770240E+000f,-1.544842782180211E+000f, 3.503787691653334E-001f,-1.637986776941202E-001f, 3.749989509080821E-001f};static float YO1 =  4.66539330185668857532f;static float Z1 = 1.46819706421238932572E1f;static float THPIO4F =  2.35619449019234492885f;    /* 3*pi/4 */static float TWOOPI =  0.636619772367581343075535f; /* 2/pi */extern float PIO4;float polevlf(float, float *, int);float logf(float), sinf(float), cosf(float), sqrtf(float);float j1f( float xx ){float x, w, z, p, q, xn;x = xx;if( x < 0 )	x = -xx;if( x <= 2.0f )	{	z = x * x;		p = (z-Z1) * x * polevlf( z, JP, 4 );	return( p );	}q = 1.0f/x;w = sqrtf(q);p = w * polevlf( q, MO1, 7);w = q*q;xn = q * polevlf( w, PH1, 7) - THPIO4F;p = p * cosf(xn + x);return(p);}extern float MAXNUMF;float y1f( float xx ){float x, w, z, p, q, xn;x = xx;if( x <= 2.0f )	{	if( x <= 0.0f )		{		mtherr( "y1f", DOMAIN );		return( -MAXNUMF );		}	z = x * x;	w = (z - YO1) * x * polevlf( z, YP, 4 );	w += TWOOPI * ( j1f(x) * logf(x)  -  1.0f/x );	return( w );	}q = 1.0f/x;w = sqrtf(q);p = w * polevlf( q, MO1, 7);w = q*q;xn = q * polevlf( w, PH1, 7) - THPIO4F;p = p * sinf(xn + x);return(p);}
 |