| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 | /*							k0f.c * *	Modified Bessel function, third kind, order zero * * * * SYNOPSIS: * * float x, y, k0f(); * * y = k0f( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order zero of the argument. * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Tested at 2000 random points between 0 and 8.  Peak absolute * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       7.8e-7      8.5e-8 * * ERROR MESSAGES: * *   message         condition      value returned *  K0 domain          x <= 0          MAXNUM * *//*							k0ef() * *	Modified Bessel function, third kind, order zero, *	exponentially scaled * * * * SYNOPSIS: * * float x, y, k0ef(); * * y = k0ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order zero of the argument. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       8.1e-7      7.8e-8 * See k0(). * *//*Cephes Math Library Release 2.0:  April, 1987Copyright 1984, 1987 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>/* Chebyshev coefficients for K0(x) + log(x/2) I0(x) * in the interval [0,2].  The odd order coefficients are all * zero; only the even order coefficients are listed. *  * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL. */static float A[] ={ 1.90451637722020886025E-9f, 2.53479107902614945675E-7f, 2.28621210311945178607E-5f, 1.26461541144692592338E-3f, 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,-5.35327393233902768720E-1f};/* Chebyshev coefficients for exp(x) sqrt(x) K0(x) * in the inverted interval [2,infinity]. *  * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2). */static float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,-4.66048989768794782956E-8f, 2.76681363944501510342E-7f,-1.83175552271911948767E-6f, 1.39498137188764993662E-5f,-1.28495495816278026384E-4f, 1.56988388573005337491E-3f,-3.14481013119645005427E-2f, 2.44030308206595545468E0f};/*							k0.c	*/ extern float MAXNUMF;#ifdef ANSICfloat chbevlf(float, float *, int);float expf(float), i0f(float), logf(float), sqrtf(float);#elsefloat chbevlf(), expf(), i0f(), logf(), sqrtf();#endiffloat k0f( float xx ){float x, y, z;x = xx;if( x <= 0.0f )	{	mtherr( "k0f", DOMAIN );	return( MAXNUMF );	}if( x <= 2.0f )	{	y = x * x - 2.0f;	y = chbevlf( y, A, 7 ) - logf( 0.5f * x ) * i0f(x);	return( y );	}z = 8.0f/x - 2.0f;y = expf(-x) * chbevlf( z, B, 10 ) / sqrtf(x);return(y);}float k0ef( float xx ){float x, y;x = xx;if( x <= 0.0f )	{	mtherr( "k0ef", DOMAIN );	return( MAXNUMF );	}if( x <= 2.0f )	{	y = x * x - 2.0f;	y = chbevlf( y, A, 7 ) - logf( 0.5f * x ) * i0f(x);	return( y * expf(x) );	}y = chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x);return(y);}
 |