| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 | /*							log2f.c * *	Base 2 logarithm * * * * SYNOPSIS: * * float x, y, log2f(); * * y = log2f( x ); * * * * DESCRIPTION: * * Returns the base 2 logarithm of x. * * The argument is separated into its exponent and fractional * parts.  If the exponent is between -1 and +1, the base e * logarithm of the fraction is approximated by * *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * Otherwise, setting  z = 2(x-1)/x+1), *  *     log(x) = z + z**3 P(z)/Q(z). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      exp(+-88)   100000      1.1e-7      2.4e-8 *    IEEE      0.5, 2.0    100000      1.1e-7      3.0e-8 * * In the tests over the interval [exp(+-88)], the logarithms * of the random arguments were uniformly distributed. * * ERROR MESSAGES: * * log singularity:  x = 0; returns MINLOGF/log(2) * log domain:       x < 0; returns MINLOGF/log(2) *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>static char fname[] = {"log2"};/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x) * 1/sqrt(2) <= x < sqrt(2) */static float P[] = { 7.0376836292E-2,-1.1514610310E-1, 1.1676998740E-1,-1.2420140846E-1, 1.4249322787E-1,-1.6668057665E-1, 2.0000714765E-1,-2.4999993993E-1, 3.3333331174E-1};#define LOG2EA 0.44269504088896340735992#define SQRTH 0.70710678118654752440extern float MINLOGF, LOGE2F;float frexpf(float, int *), polevlf(float, float *, int);float log2f(float xx){float x, y, z;int e;x = xx;/* Test for domain */if( x <= 0.0 )	{	if( x == 0.0 )		mtherr( fname, SING );	else		mtherr( fname, DOMAIN );	return( MINLOGF/LOGE2F );	}/* separate mantissa from exponent */x = frexpf( x, &e );/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */if( x < SQRTH )	{	e -= 1;	x = 2.0*x - 1.0;	}	else	{	x = x - 1.0;	}z = x*x;y = x * ( z * polevlf( x, P, 8 ) );y = y - 0.5 * z;   /*  y - 0.5 * x**2  *//* Multiply log of fraction by log2(e) * and base 2 exponent by 1 * * ***CAUTION*** * * This sequence of operations is critical and it may * be horribly defeated by some compiler optimizers. */z = y * LOG2EA;z += x * LOG2EA;z += y;z += x;z += (float )e;return( z );}
 |