| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 | /*							ndtrf.c * *	Normal distribution function * * * * SYNOPSIS: * * float x, y, ndtrf(); * * y = ndtrf( x ); * * * * DESCRIPTION: * * Returns the area under the Gaussian probability density * function, integrated from minus infinity to x: * *                            x *                             - *                   1        | |          2 *    ndtr(x)  = ---------    |    exp( - t /2 ) dt *               sqrt(2pi)  | | *                           - *                          -inf. * *             =  ( 1 + erf(z) ) / 2 *             =  erfc(z) / 2 * * where z = x/sqrt(2). Computation is via the functions * erf and erfc. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -13,0        50000       1.5e-5      2.6e-6 * * * ERROR MESSAGES: * * See erfcf(). * *//*							erff.c * *	Error function * * * * SYNOPSIS: * * float x, y, erff(); * * y = erff( x ); * * * * DESCRIPTION: * * The integral is * *                           x  *                            - *                 2         | |          2 *   erf(x)  =  --------     |    exp( - t  ) dt. *              sqrt(pi)   | | *                          - *                           0 * * The magnitude of x is limited to 9.231948545 for DEC * arithmetic; 1 or -1 is returned outside this range. * * For 0 <= |x| < 1, erf(x) = x * P(x**2); otherwise * erf(x) = 1 - erfc(x). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -9.3,9.3    50000       1.7e-7      2.8e-8 * *//*							erfcf.c * *	Complementary error function * * * * SYNOPSIS: * * float x, y, erfcf(); * * y = erfcf( x ); * * * * DESCRIPTION: * * *  1 - erf(x) = * *                           inf.  *                             - *                  2         | |          2 *   erfc(x)  =  --------     |    exp( - t  ) dt *               sqrt(pi)   | | *                           - *                            x * * * For small x, erfc(x) = 1 - erf(x); otherwise polynomial * approximations 1/x P(1/x**2) are computed. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -9.3,9.3    50000       3.9e-6      7.2e-7 * * * ERROR MESSAGES: * *   message           condition              value returned * erfcf underflow    x**2 > MAXLOGF              0.0 * * *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1987, 1988 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXLOGF, SQRTHF;/* erfc(x) = exp(-x^2) P(1/x), 1 < x < 2 */static float P[] = { 2.326819970068386E-002,-1.387039388740657E-001, 3.687424674597105E-001,-5.824733027278666E-001, 6.210004621745983E-001,-4.944515323274145E-001, 3.404879937665872E-001,-2.741127028184656E-001, 5.638259427386472E-001};/* erfc(x) = exp(-x^2) 1/x P(1/x^2), 2 < x < 14 */static float R[] = {-1.047766399936249E+001, 1.297719955372516E+001,-7.495518717768503E+000, 2.921019019210786E+000,-1.015265279202700E+000, 4.218463358204948E-001,-2.820767439740514E-001, 5.641895067754075E-001};/* erf(x) = x P(x^2), 0 < x < 1 */static float T[] = { 7.853861353153693E-005,-8.010193625184903E-004, 5.188327685732524E-003,-2.685381193529856E-002, 1.128358514861418E-001,-3.761262582423300E-001, 1.128379165726710E+000};/*#define UTHRESH 37.519379347*/#define UTHRESH 14.0#define fabsf(x) ( (x) < 0 ? -(x) : (x) )#ifdef ANSICfloat polevlf(float, float *, int);float expf(float), logf(float), erff(float), erfcf(float);#elsefloat polevlf(), expf(), logf(), erff(), erfcf();#endiffloat ndtrf(float aa){float x, y, z;x = aa;x *= SQRTHF;z = fabsf(x);if( z < SQRTHF )	y = 0.5 + 0.5 * erff(x);else	{	y = 0.5 * erfcf(z);	if( x > 0 )		y = 1.0 - y;	}return(y);}float erfcf(float aa){float a, p,q,x,y,z;a = aa;x = fabsf(a);if( x < 1.0 )	return( 1.0 - erff(a) );z = -a * a;if( z < -MAXLOGF )	{under:	mtherr( "erfcf", UNDERFLOW );	if( a < 0 )		return( 2.0 );	else		return( 0.0 );	}z = expf(z);q = 1.0/x;y = q * q;if( x < 2.0 )	{	p = polevlf( y, P, 8 );	}else	{	p = polevlf( y, R, 7 );	}y = z * q * p;if( a < 0 )	y = 2.0 - y;if( y == 0.0 )	goto under;return(y);}float erff(float xx){float x, y, z;x = xx;if( fabsf(x) > 1.0 )	return( 1.0 - erfcf(x) );z = x * x;y = x * polevlf( z, T, 6 );return( y );}
 |