| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 | /*							ndtrif.c * *	Inverse of Normal distribution function * * * * SYNOPSIS: * * float x, y, ndtrif(); * * x = ndtrif( y ); * * * * DESCRIPTION: * * Returns the argument, x, for which the area under the * Gaussian probability density function (integrated from * minus infinity to x) is equal to y. * * * For small arguments 0 < y < exp(-2), the program computes * z = sqrt( -2.0 * log(y) );  then the approximation is * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z). * There are two rational functions P/Q, one for 0 < y < exp(-32) * and the other for y up to exp(-2).  For larger arguments, * w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). * * * ACCURACY: * *                      Relative error: * arithmetic   domain        # trials      peak         rms *    IEEE     1e-38, 1        30000       3.6e-7      5.0e-8 * * * ERROR MESSAGES: * *   message         condition    value returned * ndtrif domain      x <= 0        -MAXNUM * ndtrif domain      x >= 1         MAXNUM * *//*Cephes Math Library Release 2.2:  July, 1992Copyright 1984, 1987, 1989, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF;/* sqrt(2pi) */static float s2pi = 2.50662827463100050242;/* approximation for 0 <= |y - 0.5| <= 3/8 */static float P0[5] = {-5.99633501014107895267E1, 9.80010754185999661536E1,-5.66762857469070293439E1, 1.39312609387279679503E1,-1.23916583867381258016E0,};static float Q0[8] = {/* 1.00000000000000000000E0,*/ 1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1,-2.25462687854119370527E2, 2.00260212380060660359E2,-8.20372256168333339912E1, 1.59056225126211695515E1,-1.18331621121330003142E0,};/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */static float P1[9] = { 4.05544892305962419923E0, 3.15251094599893866154E1, 5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0,-1.40256079171354495875E-1,-3.50424626827848203418E-2,-8.57456785154685413611E-4,};static float Q1[8] = {/*  1.00000000000000000000E0,*/ 1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1, 2.50464946208309415979E0,-1.42182922854787788574E-1,-3.80806407691578277194E-2,-9.33259480895457427372E-4,};/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */static float P2[9] = {  3.23774891776946035970E0,  6.91522889068984211695E0,  3.93881025292474443415E0,  1.33303460815807542389E0,  2.01485389549179081538E-1,  1.23716634817820021358E-2,  3.01581553508235416007E-4,  2.65806974686737550832E-6,  6.23974539184983293730E-9,};static float Q2[8] = {/*  1.00000000000000000000E0,*/  6.02427039364742014255E0,  3.67983563856160859403E0,  1.37702099489081330271E0,  2.16236993594496635890E-1,  1.34204006088543189037E-2,  3.28014464682127739104E-4,  2.89247864745380683936E-6,  6.79019408009981274425E-9,};#ifdef ANSICfloat polevlf(float, float *, int);float p1evlf(float, float *, int);float logf(float), sqrtf(float);#elsefloat polevlf(), p1evlf(), logf(), sqrtf();#endiffloat ndtrif(float yy0){float y0, x, y, z, y2, x0, x1;int code;y0 = yy0;if( y0 <= 0.0 )	{	mtherr( "ndtrif", DOMAIN );	return( -MAXNUMF );	}if( y0 >= 1.0 )	{	mtherr( "ndtrif", DOMAIN );	return( MAXNUMF );	}code = 1;y = y0;if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */	{	y = 1.0 - y;	code = 0;	}if( y > 0.13533528323661269189 )	{	y = y - 0.5;	y2 = y * y;	x = y + y * (y2 * polevlf( y2, P0, 4)/p1evlf( y2, Q0, 8 ));	x = x * s2pi; 	return(x);	}x = sqrtf( -2.0 * logf(y) );x0 = x - logf(x)/x;z = 1.0/x;if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */	x1 = z * polevlf( z, P1, 8 )/p1evlf( z, Q1, 8 );else	x1 = z * polevlf( z, P2, 8 )/p1evlf( z, Q2, 8 );x = x0 - x1;if( code != 0 )	x = -x;return( x );}
 |