| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 | /*							powif.c * *	Real raised to integer power * * * * SYNOPSIS: * * float x, y, powif(); * int n; * * y = powif( x, n ); * * * * DESCRIPTION: * * Returns argument x raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x.  Thus to compute the 32767 power of x requires * 28 multiplications instead of 32767 multiplications. * * * * ACCURACY: * * *                      Relative error: * arithmetic   x domain   n domain  # trials      peak         rms *    IEEE      .04,26     -26,26    100000       1.1e-6      2.0e-7 *    IEEE        1,2      -128,128  100000       1.1e-5      1.0e-6 * * Returns MAXNUMF on overflow, zero on underflow. * *//*							powi.c	*//*Cephes Math Library Release 2.2:  June, 1992Copyright 1984, 1987, 1989 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF, MAXLOGF, MINLOGF, LOGE2F;float frexpf( float, int * );float powif( float x, int nn ){int n, e, sign, asign, lx;float w, y, s;if( x == 0.0 )	{	if( nn == 0 )		return( 1.0 );	else if( nn < 0 )		return( MAXNUMF );	else		return( 0.0 );	}if( nn == 0 )	return( 1.0 );if( x < 0.0 )	{	asign = -1;	x = -x;	}else	asign = 0;if( nn < 0 )	{	sign = -1;	n = -nn;/*	x = 1.0/x;*/	}else	{	sign = 0;	n = nn;	}/* Overflow detection *//* Calculate approximate logarithm of answer */s = frexpf( x, &lx );e = (lx - 1)*n;if( (e == 0) || (e > 64) || (e < -64) )	{	s = (s - 7.0710678118654752e-1) / (s +  7.0710678118654752e-1);	s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2F;	}else	{	s = LOGE2F * e;	}if( s > MAXLOGF )	{	mtherr( "powi", OVERFLOW );	y = MAXNUMF;	goto done;	}if( s < MINLOGF )	return(0.0);/* Handle tiny denormal answer, but with less accuracy * since roundoff error in 1.0/x will be amplified. * The precise demarcation should be the gradual underflow threshold. */if( s < (-MAXLOGF+2.0) )	{	x = 1.0/x;	sign = 0;	}/* First bit of the power */if( n & 1 )	y = x;		else	{	y = 1.0;	asign = 0;	}w = x;n >>= 1;while( n )	{	w = w * w;	/* arg to the 2-to-the-kth power */	if( n & 1 )	/* if that bit is set, then include in product */		y *= w;	n >>= 1;	}done:if( asign )	y = -y; /* odd power of negative number */if( sign )	y = 1.0/y;return(y);}
 |