| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 | /*						rgammaf.c * *	Reciprocal gamma function * * * * SYNOPSIS: * * float x, y, rgammaf(); * * y = rgammaf( x ); * * * * DESCRIPTION: * * Returns one divided by the gamma function of the argument. * * The function is approximated by a Chebyshev expansion in * the interval [0,1].  Range reduction is by recurrence * for arguments between -34.034 and +34.84425627277176174. * 1/MAXNUMF is returned for positive arguments outside this * range. * * The reciprocal gamma function has no singularities, * but overflow and underflow may occur for large arguments. * These conditions return either MAXNUMF or 1/MAXNUMF with * appropriate sign. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -34,+34      100000      8.9e-7      1.1e-7 *//*Cephes Math Library Release 2.2:  June, 1992Copyright 1985, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>/* Chebyshev coefficients for reciprocal gamma function * in interval 0 to 1.  Function is 1/(x gamma(x)) - 1 */static float R[] = { 1.08965386454418662084E-9,-3.33964630686836942556E-8, 2.68975996440595483619E-7, 2.96001177518801696639E-6,-8.04814124978471142852E-5, 4.16609138709688864714E-4, 5.06579864028608725080E-3,-6.41925436109158228810E-2,-4.98558728684003594785E-3, 1.27546015610523951063E-1};static char name[] = "rgammaf";extern float PIF, MAXLOGF, MAXNUMF;float chbevlf(float, float *, int);float expf(float), logf(float), sinf(float), lgamf(float);float rgammaf(float xx){float x, w, y, z;int sign;x = xx;if( x > 34.84425627277176174)	{	mtherr( name, UNDERFLOW );	return(1.0/MAXNUMF);	}if( x < -34.034 )	{	w = -x;	z = sinf( PIF*w );	if( z == 0.0 )		return(0.0);	if( z < 0.0 )		{		sign = 1;		z = -z;		}	else		sign = -1;	y = logf( w * z / PIF ) + lgamf(w);	if( y < -MAXLOGF )		{		mtherr( name, UNDERFLOW );		return( sign * 1.0 / MAXNUMF );		}	if( y > MAXLOGF )		{		mtherr( name, OVERFLOW );		return( sign * MAXNUMF );		}	return( sign * expf(y));	}z = 1.0;w = x;while( w > 1.0 )	/* Downward recurrence */	{	w -= 1.0;	z *= w;	}while( w < 0.0 )	/* Upward recurrence */	{	z /= w;	w += 1.0;	}if( w == 0.0 )		/* Nonpositive integer */	return(0.0);if( w == 1.0 )		/* Other integer */	return( 1.0/z );y = w * ( 1.0 + chbevlf( 4.0*w-2.0, R, 10 ) ) / z;return(y);}
 |