| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 | /*							stdtrf.c * *	Student's t distribution * * * * SYNOPSIS: * * float t, stdtrf(); * short k; * * y = stdtrf( k, t ); * * * DESCRIPTION: * * Computes the integral from minus infinity to t of the Student * t distribution with integer k > 0 degrees of freedom: * *                                      t *                                      - *                                     | | *              -                      |         2   -(k+1)/2 *             | ( (k+1)/2 )           |  (     x   ) *       ----------------------        |  ( 1 + --- )        dx *                     -               |  (      k  ) *       sqrt( k pi ) | ( k/2 )        | *                                   | | *                                    - *                                   -inf. *  * Relation to incomplete beta integral: * *        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) * where *        z = k/(k + t**2). * * For t < -1, this is the method of computation.  For higher t, * a direct method is derived from integration by parts. * Since the function is symmetric about t=0, the area under the * right tail of the density is found by calling the function * with -t instead of t. *  * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      +/- 100      5000       2.3e-5      2.9e-6 *//*Cephes Math Library Release 2.2:  July, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float PIF, MACHEPF;#ifdef ANSICfloat sqrtf(float), atanf(float), incbetf(float, float, float);#elsefloat sqrtf(), atanf(), incbetf();#endiffloat stdtrf( int k, float tt ){float t, x, rk, z, f, tz, p, xsqk;int j;t = tt;if( k <= 0 )	{	mtherr( "stdtrf", DOMAIN );	return(0.0);	}if( t == 0 )	return( 0.5 );if( t < -1.0 )	{	rk = k;	z = rk / (rk + t * t);	p = 0.5 * incbetf( 0.5*rk, 0.5, z );	return( p );	}/*	compute integral from -t to + t */if( t < 0 )	x = -t;else	x = t;rk = k;	/* degrees of freedom */z = 1.0 + ( x * x )/rk;/* test if k is odd or even */if( (k & 1) != 0)	{	/*	computation for odd k	*/	xsqk = x/sqrtf(rk);	p = atanf( xsqk );	if( k > 1 )		{		f = 1.0;		tz = 1.0;		j = 3;		while(  (j<=(k-2)) && ( (tz/f) > MACHEPF )  )			{			tz *= (j-1)/( z * j );			f += tz;			j += 2;			}		p += f * xsqk/z;		}	p *= 2.0/PIF;	}else	{	/*	computation for even k	*/	f = 1.0;	tz = 1.0;	j = 2;	while(  ( j <= (k-2) ) && ( (tz/f) > MACHEPF )  )		{		tz *= (j - 1)/( z * j );		f += tz;		j += 2;		}	p = f * x/sqrtf(z*rk);	}/*	common exit	*/if( t < 0 )	p = -p;	/* note destruction of relative accuracy */	p = 0.5 + 0.5 * p;return(p);}
 |