| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 | /*							zetaf.c * *	Riemann zeta function of two arguments * * * * SYNOPSIS: * * float x, q, y, zetaf(); * * y = zetaf( x, q ); * * * * DESCRIPTION: * * * *                 inf. *                  -        -x *   zeta(x,q)  =   >   (k+q)   *                  - *                 k=0 * * where x > 1 and q is not a negative integer or zero. * The Euler-Maclaurin summation formula is used to obtain * the expansion * *                n          *                -       -x * zeta(x,q)  =   >  (k+q)   *                -          *               k=1         * *           1-x                 inf.  B   x(x+1)...(x+2j) *      (n+q)           1         -     2j *  +  ---------  -  -------  +   >    -------------------- *        x-1              x      -                   x+2j+1 *                   2(n+q)      j=1       (2j)! (n+q) * * where the B2j are Bernoulli numbers.  Note that (see zetac.c) * zeta(x,1) = zetac(x) + 1. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,25        10000       6.9e-7      1.0e-7 * * Large arguments may produce underflow in powf(), in which * case the results are inaccurate. * * REFERENCE: * * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, * Series, and Products, p. 1073; Academic Press, 1980. * *//*Cephes Math Library Release 2.2:  July, 1992Copyright 1984, 1987, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF, MACHEPF;/* Expansion coefficients * for Euler-Maclaurin summation formula * (2k)! / B2k * where B2k are Bernoulli numbers */static float A[] = {12.0,-720.0,30240.0,-1209600.0,47900160.0,-1.8924375803183791606e9, /*1.307674368e12/691*/7.47242496e10,-2.950130727918164224e12, /*1.067062284288e16/3617*/1.1646782814350067249e14, /*5.109094217170944e18/43867*/-4.5979787224074726105e15, /*8.028576626982912e20/174611*/1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/};/* 30 Nov 86 -- error in third coefficient fixed */#define fabsf(x) ( (x) < 0 ? -(x) : (x) )float powf( float, float );float zetaf(float xx, float qq){int i;float x, q, a, b, k, s, w, t;x = xx;q = qq;if( x == 1.0 )	return( MAXNUMF );if( x < 1.0 )	{	mtherr( "zetaf", DOMAIN );	return(0.0);	}/* Euler-Maclaurin summation formula *//*if( x < 25.0 ){*/w = 9.0;s = powf( q, -x );a = q;for( i=0; i<9; i++ )	{	a += 1.0;	b = powf( a, -x );	s += b;	if( b/s < MACHEPF )		goto done;	}w = a;s += b*w/(x-1.0);s -= 0.5 * b;a = 1.0;k = 0.0;for( i=0; i<12; i++ )	{	a *= x + k;	b /= w;	t = a*b/A[i];	s = s + t;	t = fabsf(t/s);	if( t < MACHEPF )		goto done;	k += 1.0;	a *= x + k;	b /= w;	k += 1.0;	}done:return(s);/*}*//* Basic sum of inverse powers *//*pseres:s = powf( q, -x );a = q;do	{	a += 2.0;	b = powf( a, -x );	s += b;	}while( b/s > MACHEPF );b = powf( 2.0, -x );s = (s + b)/(1.0-b);return(s);*/}
 |