123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* ellik.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * double phi, m, y, ellik();
- *
- * y = ellik( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi_\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with m in [0, 1] and phi as indicated.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,10 200000 7.4e-16 1.0e-16
- *
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 2000 by Stephen L. Moshier
- */
- /* Incomplete elliptic integral of first kind */
- #include <math.h>
- #ifdef ANSIPROT
- extern double sqrt ( double );
- extern double fabs ( double );
- extern double log ( double );
- extern double tan ( double );
- extern double atan ( double );
- extern double floor ( double );
- extern double ellpk ( double );
- double ellik ( double, double );
- #else
- double sqrt(), fabs(), log(), tan(), atan(), floor(), ellpk();
- double ellik();
- #endif
- extern double PI, PIO2, MACHEP, MAXNUM;
- double ellik( phi, m )
- double phi, m;
- {
- double a, b, c, e, temp, t, K;
- int d, mod, sign, npio2;
- if( m == 0.0 )
- return( phi );
- a = 1.0 - m;
- if( a == 0.0 )
- {
- if( fabs(phi) >= PIO2 )
- {
- mtherr( "ellik", SING );
- return( MAXNUM );
- }
- return( log( tan( (PIO2 + phi)/2.0 ) ) );
- }
- npio2 = floor( phi/PIO2 );
- if( npio2 & 1 )
- npio2 += 1;
- if( npio2 )
- {
- K = ellpk( a );
- phi = phi - npio2 * PIO2;
- }
- else
- K = 0.0;
- if( phi < 0.0 )
- {
- phi = -phi;
- sign = -1;
- }
- else
- sign = 0;
- b = sqrt(a);
- t = tan( phi );
- if( fabs(t) > 10.0 )
- {
- /* Transform the amplitude */
- e = 1.0/(b*t);
- /* ... but avoid multiple recursions. */
- if( fabs(e) < 10.0 )
- {
- e = atan(e);
- if( npio2 == 0 )
- K = ellpk( a );
- temp = K - ellik( e, m );
- goto done;
- }
- }
- a = 1.0;
- c = sqrt(m);
- d = 1;
- mod = 0;
- while( fabs(c/a) > MACHEP )
- {
- temp = b/a;
- phi = phi + atan(t*temp) + mod * PI;
- mod = (phi + PIO2)/PI;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = ( a - b )/2.0;
- temp = sqrt( a * b );
- a = ( a + b )/2.0;
- b = temp;
- d += d;
- }
- temp = (atan(t) + mod * PI)/(d * a);
- done:
- if( sign < 0 )
- temp = -temp;
- temp += npio2 * K;
- return( temp );
- }
|