123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- /* fac.c
- *
- * Factorial function
- *
- *
- *
- * SYNOPSIS:
- *
- * double y, fac();
- * int i;
- *
- * y = fac( i );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns factorial of i = 1 * 2 * 3 * ... * i.
- * fac(0) = 1.0.
- *
- * Due to machine arithmetic bounds the largest value of
- * i accepted is 33 in DEC arithmetic or 170 in IEEE
- * arithmetic. Greater values, or negative ones,
- * produce an error message and return MAXNUM.
- *
- *
- *
- * ACCURACY:
- *
- * For i < 34 the values are simply tabulated, and have
- * full machine accuracy. If i > 55, fac(i) = gamma(i+1);
- * see gamma.c.
- *
- * Relative error:
- * arithmetic domain peak
- * IEEE 0, 170 1.4e-15
- * DEC 0, 33 1.4e-17
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- /* Factorials of integers from 0 through 33 */
- #ifdef UNK
- static double factbl[] = {
- 1.00000000000000000000E0,
- 1.00000000000000000000E0,
- 2.00000000000000000000E0,
- 6.00000000000000000000E0,
- 2.40000000000000000000E1,
- 1.20000000000000000000E2,
- 7.20000000000000000000E2,
- 5.04000000000000000000E3,
- 4.03200000000000000000E4,
- 3.62880000000000000000E5,
- 3.62880000000000000000E6,
- 3.99168000000000000000E7,
- 4.79001600000000000000E8,
- 6.22702080000000000000E9,
- 8.71782912000000000000E10,
- 1.30767436800000000000E12,
- 2.09227898880000000000E13,
- 3.55687428096000000000E14,
- 6.40237370572800000000E15,
- 1.21645100408832000000E17,
- 2.43290200817664000000E18,
- 5.10909421717094400000E19,
- 1.12400072777760768000E21,
- 2.58520167388849766400E22,
- 6.20448401733239439360E23,
- 1.55112100433309859840E25,
- 4.03291461126605635584E26,
- 1.0888869450418352160768E28,
- 3.04888344611713860501504E29,
- 8.841761993739701954543616E30,
- 2.6525285981219105863630848E32,
- 8.22283865417792281772556288E33,
- 2.6313083693369353016721801216E35,
- 8.68331761881188649551819440128E36
- };
- #define MAXFAC 33
- #endif
- #ifdef DEC
- static unsigned short factbl[] = {
- 0040200,0000000,0000000,0000000,
- 0040200,0000000,0000000,0000000,
- 0040400,0000000,0000000,0000000,
- 0040700,0000000,0000000,0000000,
- 0041300,0000000,0000000,0000000,
- 0041760,0000000,0000000,0000000,
- 0042464,0000000,0000000,0000000,
- 0043235,0100000,0000000,0000000,
- 0044035,0100000,0000000,0000000,
- 0044661,0030000,0000000,0000000,
- 0045535,0076000,0000000,0000000,
- 0046430,0042500,0000000,0000000,
- 0047344,0063740,0000000,0000000,
- 0050271,0112146,0000000,0000000,
- 0051242,0060731,0040000,0000000,
- 0052230,0035673,0126000,0000000,
- 0053230,0035673,0126000,0000000,
- 0054241,0137567,0063300,0000000,
- 0055265,0173546,0051630,0000000,
- 0056330,0012711,0101504,0100000,
- 0057407,0006635,0171012,0150000,
- 0060461,0040737,0046656,0030400,
- 0061563,0135223,0005317,0101540,
- 0062657,0027031,0127705,0023155,
- 0064003,0061223,0041723,0156322,
- 0065115,0045006,0014773,0004410,
- 0066246,0146044,0172433,0173526,
- 0067414,0136077,0027317,0114261,
- 0070566,0044556,0110753,0045465,
- 0071737,0031214,0032075,0036050,
- 0073121,0037543,0070371,0064146,
- 0074312,0132550,0052561,0116443,
- 0075512,0132550,0052561,0116443,
- 0076721,0005423,0114035,0025014
- };
- #define MAXFAC 33
- #endif
- #ifdef IBMPC
- static unsigned short factbl[] = {
- 0x0000,0x0000,0x0000,0x3ff0,
- 0x0000,0x0000,0x0000,0x3ff0,
- 0x0000,0x0000,0x0000,0x4000,
- 0x0000,0x0000,0x0000,0x4018,
- 0x0000,0x0000,0x0000,0x4038,
- 0x0000,0x0000,0x0000,0x405e,
- 0x0000,0x0000,0x8000,0x4086,
- 0x0000,0x0000,0xb000,0x40b3,
- 0x0000,0x0000,0xb000,0x40e3,
- 0x0000,0x0000,0x2600,0x4116,
- 0x0000,0x0000,0xaf80,0x414b,
- 0x0000,0x0000,0x08a8,0x4183,
- 0x0000,0x0000,0x8cfc,0x41bc,
- 0x0000,0xc000,0x328c,0x41f7,
- 0x0000,0x2800,0x4c3b,0x4234,
- 0x0000,0x7580,0x0777,0x4273,
- 0x0000,0x7580,0x0777,0x42b3,
- 0x0000,0xecd8,0x37ee,0x42f4,
- 0x0000,0xca73,0xbeec,0x4336,
- 0x9000,0x3068,0x02b9,0x437b,
- 0x5a00,0xbe41,0xe1b3,0x43c0,
- 0xc620,0xe9b5,0x283b,0x4406,
- 0xf06c,0x6159,0x7752,0x444e,
- 0xa4ce,0x35f8,0xe5c3,0x4495,
- 0x7b9a,0x687a,0x6c52,0x44e0,
- 0x6121,0xc33f,0xa940,0x4529,
- 0x7eeb,0x9ea3,0xd984,0x4574,
- 0xf316,0xe5d9,0x9787,0x45c1,
- 0x6967,0xd23d,0xc92d,0x460e,
- 0xa785,0x8687,0xe651,0x465b,
- 0x2d0d,0x6e1f,0x27ec,0x46aa,
- 0x33a4,0x0aae,0x56ad,0x46f9,
- 0x33a4,0x0aae,0x56ad,0x4749,
- 0xa541,0x7303,0x2162,0x479a
- };
- #define MAXFAC 170
- #endif
- #ifdef MIEEE
- static unsigned short factbl[] = {
- 0x3ff0,0x0000,0x0000,0x0000,
- 0x3ff0,0x0000,0x0000,0x0000,
- 0x4000,0x0000,0x0000,0x0000,
- 0x4018,0x0000,0x0000,0x0000,
- 0x4038,0x0000,0x0000,0x0000,
- 0x405e,0x0000,0x0000,0x0000,
- 0x4086,0x8000,0x0000,0x0000,
- 0x40b3,0xb000,0x0000,0x0000,
- 0x40e3,0xb000,0x0000,0x0000,
- 0x4116,0x2600,0x0000,0x0000,
- 0x414b,0xaf80,0x0000,0x0000,
- 0x4183,0x08a8,0x0000,0x0000,
- 0x41bc,0x8cfc,0x0000,0x0000,
- 0x41f7,0x328c,0xc000,0x0000,
- 0x4234,0x4c3b,0x2800,0x0000,
- 0x4273,0x0777,0x7580,0x0000,
- 0x42b3,0x0777,0x7580,0x0000,
- 0x42f4,0x37ee,0xecd8,0x0000,
- 0x4336,0xbeec,0xca73,0x0000,
- 0x437b,0x02b9,0x3068,0x9000,
- 0x43c0,0xe1b3,0xbe41,0x5a00,
- 0x4406,0x283b,0xe9b5,0xc620,
- 0x444e,0x7752,0x6159,0xf06c,
- 0x4495,0xe5c3,0x35f8,0xa4ce,
- 0x44e0,0x6c52,0x687a,0x7b9a,
- 0x4529,0xa940,0xc33f,0x6121,
- 0x4574,0xd984,0x9ea3,0x7eeb,
- 0x45c1,0x9787,0xe5d9,0xf316,
- 0x460e,0xc92d,0xd23d,0x6967,
- 0x465b,0xe651,0x8687,0xa785,
- 0x46aa,0x27ec,0x6e1f,0x2d0d,
- 0x46f9,0x56ad,0x0aae,0x33a4,
- 0x4749,0x56ad,0x0aae,0x33a4,
- 0x479a,0x2162,0x7303,0xa541
- };
- #define MAXFAC 170
- #endif
- #ifdef ANSIPROT
- double gamma ( double );
- #else
- double gamma();
- #endif
- extern double MAXNUM;
- double fac(i)
- int i;
- {
- double x, f, n;
- int j;
- if( i < 0 )
- {
- mtherr( "fac", SING );
- return( MAXNUM );
- }
- if( i > MAXFAC )
- {
- mtherr( "fac", OVERFLOW );
- return( MAXNUM );
- }
- /* Get answer from table for small i. */
- if( i < 34 )
- {
- #ifdef UNK
- return( factbl[i] );
- #else
- return( *(double *)(&factbl[4*i]) );
- #endif
- }
- /* Use gamma function for large i. */
- if( i > 55 )
- {
- x = i + 1;
- return( gamma(x) );
- }
- /* Compute directly for intermediate i. */
- n = 34.0;
- f = 34.0;
- for( j=35; j<=i; j++ )
- {
- n += 1.0;
- f *= n;
- }
- #ifdef UNK
- f *= factbl[33];
- #else
- f *= *(double *)(&factbl[4*33]);
- #endif
- return( f );
- }
|