fac.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. /* fac.c
  2. *
  3. * Factorial function
  4. *
  5. *
  6. *
  7. * SYNOPSIS:
  8. *
  9. * double y, fac();
  10. * int i;
  11. *
  12. * y = fac( i );
  13. *
  14. *
  15. *
  16. * DESCRIPTION:
  17. *
  18. * Returns factorial of i = 1 * 2 * 3 * ... * i.
  19. * fac(0) = 1.0.
  20. *
  21. * Due to machine arithmetic bounds the largest value of
  22. * i accepted is 33 in DEC arithmetic or 170 in IEEE
  23. * arithmetic. Greater values, or negative ones,
  24. * produce an error message and return MAXNUM.
  25. *
  26. *
  27. *
  28. * ACCURACY:
  29. *
  30. * For i < 34 the values are simply tabulated, and have
  31. * full machine accuracy. If i > 55, fac(i) = gamma(i+1);
  32. * see gamma.c.
  33. *
  34. * Relative error:
  35. * arithmetic domain peak
  36. * IEEE 0, 170 1.4e-15
  37. * DEC 0, 33 1.4e-17
  38. *
  39. */
  40. /*
  41. Cephes Math Library Release 2.8: June, 2000
  42. Copyright 1984, 1987, 2000 by Stephen L. Moshier
  43. */
  44. #include <math.h>
  45. /* Factorials of integers from 0 through 33 */
  46. #ifdef UNK
  47. static double factbl[] = {
  48. 1.00000000000000000000E0,
  49. 1.00000000000000000000E0,
  50. 2.00000000000000000000E0,
  51. 6.00000000000000000000E0,
  52. 2.40000000000000000000E1,
  53. 1.20000000000000000000E2,
  54. 7.20000000000000000000E2,
  55. 5.04000000000000000000E3,
  56. 4.03200000000000000000E4,
  57. 3.62880000000000000000E5,
  58. 3.62880000000000000000E6,
  59. 3.99168000000000000000E7,
  60. 4.79001600000000000000E8,
  61. 6.22702080000000000000E9,
  62. 8.71782912000000000000E10,
  63. 1.30767436800000000000E12,
  64. 2.09227898880000000000E13,
  65. 3.55687428096000000000E14,
  66. 6.40237370572800000000E15,
  67. 1.21645100408832000000E17,
  68. 2.43290200817664000000E18,
  69. 5.10909421717094400000E19,
  70. 1.12400072777760768000E21,
  71. 2.58520167388849766400E22,
  72. 6.20448401733239439360E23,
  73. 1.55112100433309859840E25,
  74. 4.03291461126605635584E26,
  75. 1.0888869450418352160768E28,
  76. 3.04888344611713860501504E29,
  77. 8.841761993739701954543616E30,
  78. 2.6525285981219105863630848E32,
  79. 8.22283865417792281772556288E33,
  80. 2.6313083693369353016721801216E35,
  81. 8.68331761881188649551819440128E36
  82. };
  83. #define MAXFAC 33
  84. #endif
  85. #ifdef DEC
  86. static unsigned short factbl[] = {
  87. 0040200,0000000,0000000,0000000,
  88. 0040200,0000000,0000000,0000000,
  89. 0040400,0000000,0000000,0000000,
  90. 0040700,0000000,0000000,0000000,
  91. 0041300,0000000,0000000,0000000,
  92. 0041760,0000000,0000000,0000000,
  93. 0042464,0000000,0000000,0000000,
  94. 0043235,0100000,0000000,0000000,
  95. 0044035,0100000,0000000,0000000,
  96. 0044661,0030000,0000000,0000000,
  97. 0045535,0076000,0000000,0000000,
  98. 0046430,0042500,0000000,0000000,
  99. 0047344,0063740,0000000,0000000,
  100. 0050271,0112146,0000000,0000000,
  101. 0051242,0060731,0040000,0000000,
  102. 0052230,0035673,0126000,0000000,
  103. 0053230,0035673,0126000,0000000,
  104. 0054241,0137567,0063300,0000000,
  105. 0055265,0173546,0051630,0000000,
  106. 0056330,0012711,0101504,0100000,
  107. 0057407,0006635,0171012,0150000,
  108. 0060461,0040737,0046656,0030400,
  109. 0061563,0135223,0005317,0101540,
  110. 0062657,0027031,0127705,0023155,
  111. 0064003,0061223,0041723,0156322,
  112. 0065115,0045006,0014773,0004410,
  113. 0066246,0146044,0172433,0173526,
  114. 0067414,0136077,0027317,0114261,
  115. 0070566,0044556,0110753,0045465,
  116. 0071737,0031214,0032075,0036050,
  117. 0073121,0037543,0070371,0064146,
  118. 0074312,0132550,0052561,0116443,
  119. 0075512,0132550,0052561,0116443,
  120. 0076721,0005423,0114035,0025014
  121. };
  122. #define MAXFAC 33
  123. #endif
  124. #ifdef IBMPC
  125. static unsigned short factbl[] = {
  126. 0x0000,0x0000,0x0000,0x3ff0,
  127. 0x0000,0x0000,0x0000,0x3ff0,
  128. 0x0000,0x0000,0x0000,0x4000,
  129. 0x0000,0x0000,0x0000,0x4018,
  130. 0x0000,0x0000,0x0000,0x4038,
  131. 0x0000,0x0000,0x0000,0x405e,
  132. 0x0000,0x0000,0x8000,0x4086,
  133. 0x0000,0x0000,0xb000,0x40b3,
  134. 0x0000,0x0000,0xb000,0x40e3,
  135. 0x0000,0x0000,0x2600,0x4116,
  136. 0x0000,0x0000,0xaf80,0x414b,
  137. 0x0000,0x0000,0x08a8,0x4183,
  138. 0x0000,0x0000,0x8cfc,0x41bc,
  139. 0x0000,0xc000,0x328c,0x41f7,
  140. 0x0000,0x2800,0x4c3b,0x4234,
  141. 0x0000,0x7580,0x0777,0x4273,
  142. 0x0000,0x7580,0x0777,0x42b3,
  143. 0x0000,0xecd8,0x37ee,0x42f4,
  144. 0x0000,0xca73,0xbeec,0x4336,
  145. 0x9000,0x3068,0x02b9,0x437b,
  146. 0x5a00,0xbe41,0xe1b3,0x43c0,
  147. 0xc620,0xe9b5,0x283b,0x4406,
  148. 0xf06c,0x6159,0x7752,0x444e,
  149. 0xa4ce,0x35f8,0xe5c3,0x4495,
  150. 0x7b9a,0x687a,0x6c52,0x44e0,
  151. 0x6121,0xc33f,0xa940,0x4529,
  152. 0x7eeb,0x9ea3,0xd984,0x4574,
  153. 0xf316,0xe5d9,0x9787,0x45c1,
  154. 0x6967,0xd23d,0xc92d,0x460e,
  155. 0xa785,0x8687,0xe651,0x465b,
  156. 0x2d0d,0x6e1f,0x27ec,0x46aa,
  157. 0x33a4,0x0aae,0x56ad,0x46f9,
  158. 0x33a4,0x0aae,0x56ad,0x4749,
  159. 0xa541,0x7303,0x2162,0x479a
  160. };
  161. #define MAXFAC 170
  162. #endif
  163. #ifdef MIEEE
  164. static unsigned short factbl[] = {
  165. 0x3ff0,0x0000,0x0000,0x0000,
  166. 0x3ff0,0x0000,0x0000,0x0000,
  167. 0x4000,0x0000,0x0000,0x0000,
  168. 0x4018,0x0000,0x0000,0x0000,
  169. 0x4038,0x0000,0x0000,0x0000,
  170. 0x405e,0x0000,0x0000,0x0000,
  171. 0x4086,0x8000,0x0000,0x0000,
  172. 0x40b3,0xb000,0x0000,0x0000,
  173. 0x40e3,0xb000,0x0000,0x0000,
  174. 0x4116,0x2600,0x0000,0x0000,
  175. 0x414b,0xaf80,0x0000,0x0000,
  176. 0x4183,0x08a8,0x0000,0x0000,
  177. 0x41bc,0x8cfc,0x0000,0x0000,
  178. 0x41f7,0x328c,0xc000,0x0000,
  179. 0x4234,0x4c3b,0x2800,0x0000,
  180. 0x4273,0x0777,0x7580,0x0000,
  181. 0x42b3,0x0777,0x7580,0x0000,
  182. 0x42f4,0x37ee,0xecd8,0x0000,
  183. 0x4336,0xbeec,0xca73,0x0000,
  184. 0x437b,0x02b9,0x3068,0x9000,
  185. 0x43c0,0xe1b3,0xbe41,0x5a00,
  186. 0x4406,0x283b,0xe9b5,0xc620,
  187. 0x444e,0x7752,0x6159,0xf06c,
  188. 0x4495,0xe5c3,0x35f8,0xa4ce,
  189. 0x44e0,0x6c52,0x687a,0x7b9a,
  190. 0x4529,0xa940,0xc33f,0x6121,
  191. 0x4574,0xd984,0x9ea3,0x7eeb,
  192. 0x45c1,0x9787,0xe5d9,0xf316,
  193. 0x460e,0xc92d,0xd23d,0x6967,
  194. 0x465b,0xe651,0x8687,0xa785,
  195. 0x46aa,0x27ec,0x6e1f,0x2d0d,
  196. 0x46f9,0x56ad,0x0aae,0x33a4,
  197. 0x4749,0x56ad,0x0aae,0x33a4,
  198. 0x479a,0x2162,0x7303,0xa541
  199. };
  200. #define MAXFAC 170
  201. #endif
  202. #ifdef ANSIPROT
  203. double gamma ( double );
  204. #else
  205. double gamma();
  206. #endif
  207. extern double MAXNUM;
  208. double fac(i)
  209. int i;
  210. {
  211. double x, f, n;
  212. int j;
  213. if( i < 0 )
  214. {
  215. mtherr( "fac", SING );
  216. return( MAXNUM );
  217. }
  218. if( i > MAXFAC )
  219. {
  220. mtherr( "fac", OVERFLOW );
  221. return( MAXNUM );
  222. }
  223. /* Get answer from table for small i. */
  224. if( i < 34 )
  225. {
  226. #ifdef UNK
  227. return( factbl[i] );
  228. #else
  229. return( *(double *)(&factbl[4*i]) );
  230. #endif
  231. }
  232. /* Use gamma function for large i. */
  233. if( i > 55 )
  234. {
  235. x = i + 1;
  236. return( gamma(x) );
  237. }
  238. /* Compute directly for intermediate i. */
  239. n = 34.0;
  240. f = 34.0;
  241. for( j=35; j<=i; j++ )
  242. {
  243. n += 1.0;
  244. f *= n;
  245. }
  246. #ifdef UNK
  247. f *= factbl[33];
  248. #else
  249. f *= *(double *)(&factbl[4*33]);
  250. #endif
  251. return( f );
  252. }