123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- /* i1f.c
- *
- * Modified Bessel function of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i1f();
- *
- * y = i1f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order one of the
- * argument.
- *
- * The function is defined as i1(x) = -i j1( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 100000 1.5e-6 1.6e-7
- *
- *
- */
- /* i1ef.c
- *
- * Modified Bessel function of order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, i1ef();
- *
- * y = i1ef( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order one of the argument.
- *
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
- * See i1().
- *
- */
- /* i1.c 2 */
- /*
- Cephes Math Library Release 2.0: March, 1987
- Copyright 1985, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- /* Chebyshev coefficients for exp(-x) I1(x) / x
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I1(x) / x } = 1/2.
- */
- static float A[] =
- {
- 9.38153738649577178388E-9f,
- -4.44505912879632808065E-8f,
- 2.00329475355213526229E-7f,
- -8.56872026469545474066E-7f,
- 3.47025130813767847674E-6f,
- -1.32731636560394358279E-5f,
- 4.78156510755005422638E-5f,
- -1.61760815825896745588E-4f,
- 5.12285956168575772895E-4f,
- -1.51357245063125314899E-3f,
- 4.15642294431288815669E-3f,
- -1.05640848946261981558E-2f,
- 2.47264490306265168283E-2f,
- -5.29459812080949914269E-2f,
- 1.02643658689847095384E-1f,
- -1.76416518357834055153E-1f,
- 2.52587186443633654823E-1f
- };
- /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
- */
- static float B[] =
- {
- -3.83538038596423702205E-9f,
- -2.63146884688951950684E-8f,
- -2.51223623787020892529E-7f,
- -3.88256480887769039346E-6f,
- -1.10588938762623716291E-4f,
- -9.76109749136146840777E-3f,
- 7.78576235018280120474E-1f
- };
- /* i1.c */
- #define fabsf(x) ( (x) < 0 ? -(x) : (x) )
- #ifdef ANSIC
- float chbevlf(float, float *, int);
- float expf(float), sqrtf(float);
- #else
- float chbevlf(), expf(), sqrtf();
- #endif
- float i1f(float xx)
- {
- float x, y, z;
- x = xx;
- z = fabsf(x);
- if( z <= 8.0f )
- {
- y = 0.5f*z - 2.0f;
- z = chbevlf( y, A, 17 ) * z * expf(z);
- }
- else
- {
- z = expf(z) * chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z);
- }
- if( x < 0.0f )
- z = -z;
- return( z );
- }
- /* i1e() */
- float i1ef( float xx )
- {
- float x, y, z;
- x = xx;
- z = fabsf(x);
- if( z <= 8.0f )
- {
- y = 0.5f*z - 2.0f;
- z = chbevlf( y, A, 17 ) * z;
- }
- else
- {
- z = chbevlf( 32.0f/z - 2.0f, B, 7 ) / sqrtf(z);
- }
- if( x < 0.0f )
- z = -z;
- return( z );
- }
|