123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- /* nbdtrf.c
- *
- * Negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, nbdtrf();
- *
- * y = nbdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the negative
- * binomial distribution:
- *
- * k
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * In a sequence of Bernoulli trials, this is the probability
- * that k or fewer failures precede the nth success.
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.5e-4 1.9e-5
- *
- */
- /* nbdtrcf.c
- *
- * Complemented negative binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, nbdtrcf();
- *
- * y = nbdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 to infinity of the negative
- * binomial distribution:
- *
- * inf
- * -- ( n+j-1 ) n j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not computed individually; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 1.4e-4 2.0e-5
- *
- */
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- #ifdef ANSIC
- float incbetf(float, float, float);
- #else
- float incbetf();
- #endif
- float nbdtrcf( int k, int n, float pp )
- {
- float dk, dn, p;
- p = pp;
- if( (p < 0.0) || (p > 1.0) )
- goto domerr;
- if( k < 0 )
- {
- domerr:
- mtherr( "nbdtrf", DOMAIN );
- return( 0.0 );
- }
- dk = k+1;
- dn = n;
- return( incbetf( dk, dn, 1.0 - p ) );
- }
- float nbdtrf( int k, int n, float pp )
- {
- float dk, dn, p;
- p = pp;
- if( (p < 0.0) || (p > 1.0) )
- goto domerr;
- if( k < 0 )
- {
- domerr:
- mtherr( "nbdtrf", DOMAIN );
- return( 0.0 );
- }
- dk = k+1;
- dn = n;
- return( incbetf( dn, dk, p ) );
- }
|