| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 | /* @(#)er_lgamma.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: e_lgamma_r.c,v 1.7 1995/05/10 20:45:42 jtc Exp $";#endif/* __ieee754_lgamma_r(x, signgamp) * Reentrant version of the logarithm of the Gamma function * with user provide pointer for the sign of Gamma(x). * * Method: *   1. Argument Reduction for 0 < x <= 8 * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may * 	reduce x to a number in [1.5,2.5] by * 		lgamma(1+s) = log(s) + lgamma(s) *	for example, *		lgamma(7.3) = log(6.3) + lgamma(6.3) *			    = log(6.3*5.3) + lgamma(5.3) *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) *   2. Polynomial approximation of lgamma around its *	minimun ymin=1.461632144968362245 to maintain monotonicity. *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use *		Let z = x-ymin; *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z) *	where *		poly(z) is a 14 degree polynomial. *   2. Rational approximation in the primary interval [2,3] *	We use the following approximation: *		s = x-2.0; *		lgamma(x) = 0.5*s + s*P(s)/Q(s) *	with accuracy *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71 *	Our algorithms are based on the following observation * *                             zeta(2)-1    2    zeta(3)-1    3 * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ... *                                 2                 3 * *	where Euler = 0.5771... is the Euler constant, which is very *	close to 0.5. * *   3. For x>=8, we have *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... *	(better formula: *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) *	Let z = 1/x, then we approximation *		f(z) = lgamma(x) - (x-0.5)(log(x)-1) *	by *	  			    3       5             11 *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z *	where *		|w - f(z)| < 2**-58.74 * *   4. For negative x, since (G is gamma function) *		-x*G(-x)*G(x) = pi/sin(pi*x), * 	we have * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x)) *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 *	Hence, for x<0, signgam = sign(sin(pi*x)) and *		lgamma(x) = log(|Gamma(x)|) *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); *	Note: one should avoid compute pi*(-x) directly in the *	      computation of sin(pi*(-x)). * *   5. Special Cases *		lgamma(2+s) ~ s*(1-Euler) for tiny s *		lgamma(1)=lgamma(2)=0 *		lgamma(x) ~ -log(x) for tiny x *		lgamma(0) = lgamma(inf) = inf *	 	lgamma(-integer) = +-inf * */#include "math.h"#include "math_private.h"libm_hidden_proto(floor)libm_hidden_proto(fabs)#ifdef __STDC__static const double#elsestatic double#endiftwo52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 *//* tt = -(tail of tf) */tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */#ifdef __STDC__static const double zero=  0.00000000000000000000e+00;#elsestatic double zero=  0.00000000000000000000e+00;#endifstatic#ifdef __GNUC__inline#endif#ifdef __STDC__	double sin_pi(double x)#else	double sin_pi(x)	double x;#endif{	double y,z;	int n,ix;	GET_HIGH_WORD(ix,x);	ix &= 0x7fffffff;	if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);	y = -x;		/* x is assume negative */    /*     * argument reduction, make sure inexact flag not raised if input     * is an integer     */	z = floor(y);	if(z!=y) {				/* inexact anyway */	    y  *= 0.5;	    y   = 2.0*(y - floor(y));		/* y = |x| mod 2.0 */	    n   = (int) (y*4.0);	} else {            if(ix>=0x43400000) {                y = zero; n = 0;                 /* y must be even */            } else {                if(ix<0x43300000) z = y+two52;	/* exact */		GET_LOW_WORD(n,z);		n &= 1;                y  = n;                n<<= 2;            }        }	switch (n) {	    case 0:   y =  __kernel_sin(pi*y,zero,0); break;	    case 1:	    case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;	    case 3:	    case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;	    case 5:	    case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;	    default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;	    }	return -y;}#ifdef __STDC__	double attribute_hidden __ieee754_lgamma_r(double x, int *signgamp)#else	double attribute_hidden __ieee754_lgamma_r(x,signgamp)	double x; int *signgamp;#endif{	double t,y,z,nadj=0,p,p1,p2,p3,q,r,w;	int i,hx,lx,ix;	EXTRACT_WORDS(hx,lx,x);    /* purge off +-inf, NaN, +-0, and negative arguments */	*signgamp = 1;	ix = hx&0x7fffffff;	if(ix>=0x7ff00000) return x*x;	if((ix|lx)==0) return one/zero;	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */	    if(hx<0) {	        *signgamp = -1;	        return -__ieee754_log(-x);	    } else return -__ieee754_log(x);	}	if(hx<0) {	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */		return one/zero;	    t = sin_pi(x);	    if(t==zero) return one/zero; /* -integer */	    nadj = __ieee754_log(pi/fabs(t*x));	    if(t<zero) *signgamp = -1;	    x = -x;	}    /* purge off 1 and 2 */	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;    /* for x < 2.0 */	else if(ix<0x40000000) {	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */		r = -__ieee754_log(x);		if(ix>=0x3FE76944) {y = one-x; i= 0;}		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}	  	else {y = x; i=2;}	    } else {	  	r = zero;	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */		else {y=x-one;i=2;}	    }	    switch(i) {	      case 0:		z = y*y;		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));		p  = y*p1+p2;		r  += (p-0.5*y); break;	      case 1:		z = y*y;		w = z*y;		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));		p  = z*p1-(tt-w*(p2+y*p3));		r += (tf + p); break;	      case 2:		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));		r += (-0.5*y + p1/p2);	    }	}	else if(ix<0x40200000) { 			/* x < 8.0 */	    i = (int)x;	    t = zero;	    y = x-(double)i;	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));	    r = half*y+p/q;	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */	    switch(i) {	    case 7: z *= (y+6.0);	/* FALLTHRU */	    case 6: z *= (y+5.0);	/* FALLTHRU */	    case 5: z *= (y+4.0);	/* FALLTHRU */	    case 4: z *= (y+3.0);	/* FALLTHRU */	    case 3: z *= (y+2.0);	/* FALLTHRU */		    r += __ieee754_log(z); break;	    }    /* 8.0 <= x < 2**58 */	} else if (ix < 0x43900000) {	    t = __ieee754_log(x);	    z = one/x;	    y = z*z;	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));	    r = (x-half)*(t-one)+w;	} else    /* 2**58 <= x <= inf */	    r =  x*(__ieee754_log(x)-one);	if(hx<0) r = nadj - r;	return r;}
 |