| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845 | /*							acosh.c * *	Inverse hyperbolic cosine * * * * SYNOPSIS: * * double x, y, acosh(); * * y = acosh( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic cosine of argument. * * If 1 <= x < 1.5, a rational approximation * *	sqrt(z) * P(z)/Q(z) * * where z = x-1, is used.  Otherwise, * * acosh(x)  =  log( x + sqrt( (x-1)(x+1) ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       1,3         30000       4.2e-17     1.1e-17 *    IEEE      1,3         30000       4.6e-16     8.7e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * acosh domain       |x| < 1            NAN * *//*							airy.c * *	Airy function * * * * SYNOPSIS: * * double x, ai, aip, bi, bip; * int airy(); * * airy( x, _&ai, _&aip, _&bi, _&bip ); * * * * DESCRIPTION: * * Solution of the differential equation * *	y"(x) = xy. * * The function returns the two independent solutions Ai, Bi * and their first derivatives Ai'(x), Bi'(x). * * Evaluation is by power series summation for small x, * by rational minimax approximations for large x. * * * * ACCURACY: * Error criterion is absolute when function <= 1, relative * when function > 1, except * denotes relative error criterion. * For large negative x, the absolute error increases as x^1.5. * For large positive x, the relative error increases as x^1.5. * * Arithmetic  domain   function  # trials      peak         rms * IEEE        -10, 0     Ai        10000       1.6e-15     2.7e-16 * IEEE          0, 10    Ai        10000       2.3e-14*    1.8e-15* * IEEE        -10, 0     Ai'       10000       4.6e-15     7.6e-16 * IEEE          0, 10    Ai'       10000       1.8e-14*    1.5e-15* * IEEE        -10, 10    Bi        30000       4.2e-15     5.3e-16 * IEEE        -10, 10    Bi'       30000       4.9e-15     7.3e-16 * DEC         -10, 0     Ai         5000       1.7e-16     2.8e-17 * DEC           0, 10    Ai         5000       2.1e-15*    1.7e-16* * DEC         -10, 0     Ai'        5000       4.7e-16     7.8e-17 * DEC           0, 10    Ai'       12000       1.8e-15*    1.5e-16* * DEC         -10, 10    Bi        10000       5.5e-16     6.8e-17 * DEC         -10, 10    Bi'        7000       5.3e-16     8.7e-17 * *//*							asin.c * *	Inverse circular sine * * * * SYNOPSIS: * * double x, y, asin(); * * y = asin( x ); * * * * DESCRIPTION: * * Returns radian angle between -pi/2 and +pi/2 whose sine is x. * * A rational function of the form x + x**3 P(x**2)/Q(x**2) * is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is * transformed by the identity * *    asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ). * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      -1, 1        40000       2.6e-17     7.1e-18 *    IEEE     -1, 1        10^6        1.9e-16     5.4e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * asin domain        |x| > 1           NAN * *//*							acos() * *	Inverse circular cosine * * * * SYNOPSIS: * * double x, y, acos(); * * y = acos( x ); * * * * DESCRIPTION: * * Returns radian angle between 0 and pi whose cosine * is x. * * Analytically, acos(x) = pi/2 - asin(x).  However if |x| is * near 1, there is cancellation error in subtracting asin(x) * from pi/2.  Hence if x < -0.5, * *    acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) ); * * or if x > +0.5, * *    acos(x) =	 2.0 * asin(  sqrt((1-x)/2) ). * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -1, 1       50000       3.3e-17     8.2e-18 *    IEEE      -1, 1       10^6        2.2e-16     6.5e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * asin domain        |x| > 1           NAN *//*							asinh.c * *	Inverse hyperbolic sine * * * * SYNOPSIS: * * double x, y, asinh(); * * y = asinh( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic sine of argument. * * If |x| < 0.5, the function is approximated by a rational * form  x + x**3 P(x)/Q(x).  Otherwise, * *     asinh(x) = log( x + sqrt(1 + x*x) ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      -3,3         75000       4.6e-17     1.1e-17 *    IEEE     -1,1         30000       3.7e-16     7.8e-17 *    IEEE      1,3         30000       2.5e-16     6.7e-17 * *//*							atan.c * *	Inverse circular tangent *      (arctangent) * * * * SYNOPSIS: * * double x, y, atan(); * * y = atan( x ); * * * * DESCRIPTION: * * Returns radian angle between -pi/2 and +pi/2 whose tangent * is x. * * Range reduction is from three intervals into the interval * from zero to 0.66.  The approximant uses a rational * function of degree 4/5 of the form x + x**3 P(x)/Q(x). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10, 10     50000       2.4e-17     8.3e-18 *    IEEE      -10, 10      10^6       1.8e-16     5.0e-17 * *//*							atan2() * *	Quadrant correct inverse circular tangent * * * * SYNOPSIS: * * double x, y, z, atan2(); * * z = atan2( y, x ); * * * * DESCRIPTION: * * Returns radian angle whose tangent is y/x. * Define compile time symbol ANSIC = 1 for ANSI standard, * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range * 0 to 2PI, args (x,y). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10, 10      10^6       2.5e-16     6.9e-17 * See atan.c. * *//*							atanh.c * *	Inverse hyperbolic tangent * * * * SYNOPSIS: * * double x, y, atanh(); * * y = atanh( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic tangent of argument in the range * MINLOG to MAXLOG. * * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is * employed.  Otherwise, *        atanh(x) = 0.5 * log( (1+x)/(1-x) ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -1,1        50000       2.4e-17     6.4e-18 *    IEEE      -1,1        30000       1.9e-16     5.2e-17 * *//*							bdtr.c * *	Binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtr(); * * y = bdtr( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the Binomial * probability density: * *   k *   --  ( n )   j      n-j *   >   (   )  p  (1-p) *   --  ( j ) *  j=0 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p), with p between 0 and 1. * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between 0.001 and 1: *    IEEE     0,100       100000      4.3e-15     2.6e-16 * See also incbet.c. * * ERROR MESSAGES: * *   message         condition      value returned * bdtr domain         k < 0            0.0 *                     n < k *                     x < 0, x > 1 *//*							bdtrc() * *	Complemented binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtrc(); * * y = bdtrc( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms k+1 through n of the Binomial * probability density: * *   n *   --  ( n )   j      n-j *   >   (   )  p  (1-p) *   --  ( j ) *  j=k+1 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p). * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between 0.001 and 1: *    IEEE     0,100       100000      6.7e-15     8.2e-16 *  For p between 0 and .001: *    IEEE     0,100       100000      1.5e-13     2.7e-15 * * ERROR MESSAGES: * *   message         condition      value returned * bdtrc domain      x<0, x>1, n<k       0.0 *//*							bdtri() * *	Inverse binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtri(); * * p = bdtr( k, n, y ); * * DESCRIPTION: * * Finds the event probability p such that the sum of the * terms 0 through k of the Binomial probability density * is equal to the given cumulative probability y. * * This is accomplished using the inverse beta integral * function and the relation * * 1 - p = incbi( n-k, k+1, y ). * * ACCURACY: * * Tested at random points (a,b,p). * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between 0.001 and 1: *    IEEE     0,100       100000      2.3e-14     6.4e-16 *    IEEE     0,10000     100000      6.6e-12     1.2e-13 *  For p between 10^-6 and 0.001: *    IEEE     0,100       100000      2.0e-12     1.3e-14 *    IEEE     0,10000     100000      1.5e-12     3.2e-14 * See also incbi.c. * * ERROR MESSAGES: * *   message         condition      value returned * bdtri domain     k < 0, n <= k         0.0 *                  x < 0, x > 1 *//*							beta.c * *	Beta function * * * * SYNOPSIS: * * double a, b, y, beta(); * * y = beta( a, b ); * * * * DESCRIPTION: * *                   -     - *                  | (a) | (b) * beta( a, b )  =  -----------. *                     - *                    | (a+b) * * For large arguments the logarithm of the function is * evaluated using lgam(), then exponentiated. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC        0,30        1700       7.7e-15     1.5e-15 *    IEEE       0,30       30000       8.1e-14     1.1e-14 * * ERROR MESSAGES: * *   message         condition          value returned * beta overflow    log(beta) > MAXLOG       0.0 *                  a or b <0 integer        0.0 * *//*							btdtr.c * *	Beta distribution * * * * SYNOPSIS: * * double a, b, x, y, btdtr(); * * y = btdtr( a, b, x ); * * * * DESCRIPTION: * * Returns the area from zero to x under the beta density * function: * * *                          x *            -             - *           | (a+b)       | |  a-1      b-1 * P(x)  =  ----------     |   t    (1-t)    dt *           -     -     | | *          | (a) | (b)   - *                         0 * * * This function is identical to the incomplete beta * integral function incbet(a, b, x). * * The complemented function is * * 1 - P(1-x)  =  incbet( b, a, x ); * * * ACCURACY: * * See incbet.c. * *//*							cbrt.c * *	Cube root * * * * SYNOPSIS: * * double x, y, cbrt(); * * y = cbrt( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument.  A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%.  Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC        -10,10     200000      1.8e-17     6.2e-18 *    IEEE       0,1e308     30000      1.5e-16     5.0e-17 * *//*							chbevl.c * *	Evaluate Chebyshev series * * * * SYNOPSIS: * * int N; * double x, y, coef[N], chebevl(); * * y = chbevl( x, coef, N ); * * * * DESCRIPTION: * * Evaluates the series * *        N-1 *         - ' *  y  =   >   coef[i] T (x/2) *         -            i *        i=0 * * of Chebyshev polynomials Ti at argument x/2. * * Coefficients are stored in reverse order, i.e. the zero * order term is last in the array.  Note N is the number of * coefficients, not the order. * * If coefficients are for the interval a to b, x must * have been transformed to x -> 2(2x - b - a)/(b-a) before * entering the routine.  This maps x from (a, b) to (-1, 1), * over which the Chebyshev polynomials are defined. * * If the coefficients are for the inverted interval, in * which (a, b) is mapped to (1/b, 1/a), the transformation * required is x -> 2(2ab/x - b - a)/(b-a).  If b is infinity, * this becomes x -> 4a/x - 1. * * * * SPEED: * * Taking advantage of the recurrence properties of the * Chebyshev polynomials, the routine requires one more * addition per loop than evaluating a nested polynomial of * the same degree. * *//*							chdtr.c * *	Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtr(); * * y = chdtr( df, x ); * * * * DESCRIPTION: * * Returns the area under the left hand tail (from 0 to x) * of the Chi square probability density function with * v degrees of freedom. * * *                                  inf. *                                    - *                        1          | |  v/2-1  -t/2 *  P( x | v )   =   -----------     |   t      e     dt *                    v/2  -       | | *                   2    | (v/2)   - *                                   x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igam(). * * ERROR MESSAGES: * *   message         condition      value returned * chdtr domain   x < 0 or v < 1        0.0 *//*							chdtrc() * *	Complemented Chi-square distribution * * * * SYNOPSIS: * * double v, x, y, chdtrc(); * * y = chdtrc( v, x ); * * * * DESCRIPTION: * * Returns the area under the right hand tail (from x to * infinity) of the Chi square probability density function * with v degrees of freedom: * * *                                  inf. *                                    - *                        1          | |  v/2-1  -t/2 *  P( x | v )   =   -----------     |   t      e     dt *                    v/2  -       | | *                   2    | (v/2)   - *                                   x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * * ERROR MESSAGES: * *   message         condition      value returned * chdtrc domain  x < 0 or v < 1        0.0 *//*							chdtri() * *	Inverse of complemented Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtri(); * * x = chdtri( df, y ); * * * * * DESCRIPTION: * * Finds the Chi-square argument x such that the integral * from x to infinity of the Chi-square density is equal * to the given cumulative probability y. * * This is accomplished using the inverse gamma integral * function and the relation * *    x/2 = igami( df/2, y ); * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * *   message         condition      value returned * chdtri domain   y < 0 or y > 1        0.0 *                     v < 1 * *//*							clog.c * *	Complex natural logarithm * * * * SYNOPSIS: * * void clog(); * cmplx z, w; * * clog( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then *       w = log(r) + i arctan(y/x). *  * The arctangent ranges from -PI to +PI. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      7000       8.5e-17     1.9e-17 *    IEEE      -10,+10     30000       5.0e-15     1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. *//*							cexp() * *	Complex exponential function * * * * SYNOPSIS: * * void cexp(); * cmplx z, w; * * cexp( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If *     z = x + iy, *     r = exp(x), * * then * *     w = r cos y + i r sin y. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8700       3.7e-17     1.1e-17 *    IEEE      -10,+10     30000       3.0e-16     8.7e-17 * *//*							csin() * *	Complex circular sine * * * * SYNOPSIS: * * void csin(); * cmplx z, w; * * csin( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = sin x  cosh y  +  i cos x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8400       5.3e-17     1.3e-17 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16 * Also tested by csin(casin(z)) = z. * *//*							ccos() * *	Complex circular cosine * * * * SYNOPSIS: * * void ccos(); * cmplx z, w; * * ccos( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = cos x  cosh y  -  i sin x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8400       4.5e-17     1.3e-17 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16 *//*							ctan() * *	Complex circular tangent * * * * SYNOPSIS: * * void ctan(); * cmplx z, w; * * ctan( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  +  i sinh 2y *     w  =  --------------------. *            cos 2x  +  cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2.  The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200       7.1e-17     1.6e-17 *    IEEE      -10,+10     30000       7.2e-16     1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z. *//*							ccot() * *	Complex circular cotangent * * * * SYNOPSIS: * * void ccot(); * cmplx z, w; * * ccot( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  -  i sinh 2y *     w  =  --------------------. *            cosh 2y  -  cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2.  Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      3000       6.5e-17     1.6e-17 *    IEEE      -10,+10     30000       9.2e-16     1.2e-16 * Also tested by ctan * ccot = 1 + i0. *//*							casin() * *	Complex circular arc sine * * * * SYNOPSIS: * * void casin(); * cmplx z, w; * * casin( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * *                               2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10     10100       2.1e-15     3.4e-16 *    IEEE      -10,+10     30000       2.2e-14     2.7e-15 * Larger relative error can be observed for z near zero. * Also tested by csin(casin(z)) = z. *//*							cacos() * *	Complex circular arc cosine * * * * SYNOPSIS: * * void cacos(); * cmplx z, w; * * cacos( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z  =  PI/2 - arcsin z. * * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200      1.6e-15      2.8e-16 *    IEEE      -10,+10     30000      1.8e-14      2.2e-15 *//*							catan() * *	Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplx z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then *          1       (    2x     ) * Re w  =  - arctan(-----------)  +  k PI *          2       (     2    2) *                  (1 - x  - y ) * *               ( 2         2) *          1    (x  +  (y+1) ) * Im w  =  - log(------------) *          4    ( 2         2) *               (x  +  (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5900       1.3e-16     7.8e-18 *    IEEE      -10,+10     30000       2.3e-15     8.5e-17 * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17.  See also clog(). *//*							cmplx.c * *	Complex number arithmetic * * * * SYNOPSIS: * * typedef struct { *      double r;     real part *      double i;     imaginary part *     }cmplx; * * cmplx *a, *b, *c; * * cadd( a, b, c );     c = b + a * csub( a, b, c );     c = b - a * cmul( a, b, c );     c = b * a * cdiv( a, b, c );     c = b / a * cneg( c );           c = -c * cmov( b, c );        c = b * * * * DESCRIPTION: * * Addition: *    c.r  =  b.r + a.r *    c.i  =  b.i + a.i * * Subtraction: *    c.r  =  b.r - a.r *    c.i  =  b.i - a.i * * Multiplication: *    c.r  =  b.r * a.r  -  b.i * a.i *    c.i  =  b.r * a.i  +  b.i * a.r * * Division: *    d    =  a.r * a.r  +  a.i * a.i *    c.r  = (b.r * a.r  + b.i * a.i)/d *    c.i  = (b.i * a.r  -  b.r * a.i)/d * ACCURACY: * * In DEC arithmetic, the test (1/z) * z = 1 had peak relative * error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had * peak relative error 8.3e-17, rms 2.1e-17. * * Tests in the rectangle {-10,+10}: *                      Relative error: * arithmetic   function  # trials      peak         rms *    DEC        cadd       10000       1.4e-17     3.4e-18 *    IEEE       cadd      100000       1.1e-16     2.7e-17 *    DEC        csub       10000       1.4e-17     4.5e-18 *    IEEE       csub      100000       1.1e-16     3.4e-17 *    DEC        cmul        3000       2.3e-17     8.7e-18 *    IEEE       cmul      100000       2.1e-16     6.9e-17 *    DEC        cdiv       18000       4.9e-17     1.3e-17 *    IEEE       cdiv      100000       3.7e-16     1.1e-16 *//*							cabs() * *	Complex absolute value * * * * SYNOPSIS: * * double cabs(); * cmplx z; * double a; * * a = cabs( &z ); * * * * DESCRIPTION: * * * If z = x + iy * * then * *       a = sqrt( x**2 + y**2 ). *  * Overflow and underflow are avoided by testing the magnitudes * of x and y before squaring.  If either is outside half of * the floating point full scale range, both are rescaled. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -30,+30     30000       3.2e-17     9.2e-18 *    IEEE      -10,+10    100000       2.7e-16     6.9e-17 *//*							csqrt() * *	Complex square root * * * * SYNOPSIS: * * void csqrt(); * cmplx z, w; * * csqrt( &z, &w ); * * * * DESCRIPTION: * * * If z = x + iy,  r = |z|, then * *                       1/2 * Im w  =  [ (r - x)/2 ]   , * * Re w  =  y / 2 Im w. * * * Note that -w is also a square root of z.  The root chosen * is always in the upper half plane. * * Because of the potential for cancellation error in r - x, * the result is sharpened by doing a Heron iteration * (see sqrt.c) in complex arithmetic. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10     25000       3.2e-17     9.6e-18 *    IEEE      -10,+10    100000       3.2e-16     7.7e-17 * *                        2 * Also tested by csqrt( z ) = z, and tested by arguments * close to the real axis. *//*							const.c * *	Globally declared constants * * * * SYNOPSIS: * * extern double nameofconstant; * * * * * DESCRIPTION: * * This file contains a number of mathematical constants and * also some needed size parameters of the computer arithmetic. * The values are supplied as arrays of hexadecimal integers * for IEEE arithmetic; arrays of octal constants for DEC * arithmetic; and in a normal decimal scientific notation for * other machines.  The particular notation used is determined * by a symbol (DEC, IBMPC, or UNK) defined in the include file * math.h. * * The default size parameters are as follows. * * For DEC and UNK modes: * MACHEP =  1.38777878078144567553E-17       2**-56 * MAXLOG =  8.8029691931113054295988E1       log(2**127) * MINLOG = -8.872283911167299960540E1        log(2**-128) * MAXNUM =  1.701411834604692317316873e38    2**127 * * For IEEE arithmetic (IBMPC): * MACHEP =  1.11022302462515654042E-16       2**-53 * MAXLOG =  7.09782712893383996843E2         log(2**1024) * MINLOG = -7.08396418532264106224E2         log(2**-1022) * MAXNUM =  1.7976931348623158E308           2**1024 * * The global symbols for mathematical constants are * PI     =  3.14159265358979323846           pi * PIO2   =  1.57079632679489661923           pi/2 * PIO4   =  7.85398163397448309616E-1        pi/4 * SQRT2  =  1.41421356237309504880           sqrt(2) * SQRTH  =  7.07106781186547524401E-1        sqrt(2)/2 * LOG2E  =  1.4426950408889634073599         1/log(2) * SQ2OPI =  7.9788456080286535587989E-1      sqrt( 2/pi ) * LOGE2  =  6.93147180559945309417E-1        log(2) * LOGSQ2 =  3.46573590279972654709E-1        log(2)/2 * THPIO4 =  2.35619449019234492885           3*pi/4 * TWOOPI =  6.36619772367581343075535E-1     2/pi * * These lists are subject to change. *//*							cosh.c * *	Hyperbolic cosine * * * * SYNOPSIS: * * double x, y, cosh(); * * y = cosh( x ); * * * * DESCRIPTION: * * Returns hyperbolic cosine of argument in the range MINLOG to * MAXLOG. * * cosh(x)  =  ( exp(x) + exp(-x) )/2. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       +- 88       50000       4.0e-17     7.7e-18 *    IEEE     +-MAXLOG     30000       2.6e-16     5.7e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * cosh overflow    |x| > MAXLOG       MAXNUM * * *//*							cpmul.c * *	Multiply two polynomials with complex coefficients * * * * SYNOPSIS: * * typedef struct *		{ *		double r; *		double i; *		}cmplx; * * cmplx a[], b[], c[]; * int da, db, dc; * * cpmul( a, da, b, db, c, &dc ); * * * * DESCRIPTION: * * The two argument polynomials are multiplied together, and * their product is placed in c. * * Each polynomial is represented by its coefficients stored * as an array of complex number structures (see the typedef). * The degree of a is da, which must be passed to the routine * as an argument; similarly the degree db of b is an argument. * Array a has da + 1 elements and array b has db + 1 elements. * Array c must have storage allocated for at least da + db + 1 * elements.  The value da + db is returned in dc; this is * the degree of the product polynomial. * * Polynomial coefficients are stored in ascending order; i.e., * a(x) = a[0]*x**0 + a[1]*x**1 + ... + a[da]*x**da. * * * If desired, c may be the same as either a or b, in which * case the input argument array is replaced by the product * array (but only up to terms of degree da + db). * *//*							dawsn.c * *	Dawson's Integral * * * * SYNOPSIS: * * double x, y, dawsn(); * * y = dawsn( x ); * * * * DESCRIPTION: * * Approximates the integral * *                             x *                             - *                      2     | |        2 *  dawsn(x)  =  exp( -x  )   |    exp( t  ) dt *                          | | *                           - *                           0 * * Three different rational approximations are employed, for * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,10        10000       6.9e-16     1.0e-16 *    DEC       0,10         6000       7.4e-17     1.4e-17 * * *//*							drand.c * *	Pseudorandom number generator * * * * SYNOPSIS: * * double y, drand(); * * drand( &y ); * * * * DESCRIPTION: * * Yields a random number 1.0 <= y < 2.0. * * The three-generator congruential algorithm by Brian * Wichmann and David Hill (BYTE magazine, March, 1987, * pp 127-8) is used. The period, given by them, is * 6953607871644. * * Versions invoked by the different arithmetic compile * time options DEC, IBMPC, and MIEEE, produce * approximately the same sequences, differing only in the * least significant bits of the numbers. The UNK option * implements the algorithm as recommended in the BYTE * article.  It may be used on all computers. However, * the low order bits of a double precision number may * not be adequately random, and may vary due to arithmetic * implementation details on different computers. * * The other compile options generate an additional random * integer that overwrites the low order bits of the double * precision number.  This reduces the period by a factor of * two but tends to overcome the problems mentioned. * *//*							eigens.c * *	Eigenvalues and eigenvectors of a real symmetric matrix * * * * SYNOPSIS: * * int n; * double A[n*(n+1)/2], EV[n*n], E[n]; * void eigens( A, EV, E, n ); * * * * DESCRIPTION: * * The algorithm is due to J. vonNeumann. * * A[] is a symmetric matrix stored in lower triangular form. * That is, A[ row, column ] = A[ (row*row+row)/2 + column ] * or equivalently with row and column interchanged.  The * indices row and column run from 0 through n-1. * * EV[] is the output matrix of eigenvectors stored columnwise. * That is, the elements of each eigenvector appear in sequential * memory order.  The jth element of the ith eigenvector is * EV[ n*i+j ] = EV[i][j]. * * E[] is the output matrix of eigenvalues.  The ith element * of E corresponds to the ith eigenvector (the ith row of EV). * * On output, the matrix A will have been diagonalized and its * orginal contents are destroyed. * * ACCURACY: * * The error is controlled by an internal parameter called RANGE * which is set to 1e-10.  After diagonalization, the * off-diagonal elements of A will have been reduced by * this factor. * * ERROR MESSAGES: * * None. * *//*							ellie.c * *	Incomplete elliptic integral of the second kind * * * * SYNOPSIS: * * double phi, m, y, ellie(); * * y = ellie( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * *                phi *                 - *                | | *                |                   2 * E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt *                | *              | |     *               - *                0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * ACCURACY: * * Tested at random arguments with phi in [-10, 10] and m in * [0, 1]. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC        0,2         2000       1.9e-16     3.4e-17 *    IEEE     -10,10      150000       3.3e-15     1.4e-16 * * *//*							ellik.c * *	Incomplete elliptic integral of the first kind * * * * SYNOPSIS: * * double phi, m, y, ellik(); * * y = ellik( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * *                phi *                 - *                | | *                |           dt * F(phi_\m)  =    |    ------------------ *                |                   2 *              | |    sqrt( 1 - m sin t ) *               - *                0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * * ACCURACY: * * Tested at random points with m in [0, 1] and phi as indicated. * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -10,10       200000      7.4e-16     1.0e-16 * * *//*							ellpe.c * *	Complete elliptic integral of the second kind * * * * SYNOPSIS: * * double m1, y, ellpe(); * * y = ellpe( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * *            pi/2 *             - *            | |                 2 * E(m)  =    |    sqrt( 1 - m sin t ) dt *          | |     *           - *            0 * * Where m = 1 - m1, using the approximation * *      P(x)  -  x log x Q(x). * * Though there are no singularities, the argument m1 is used * rather than m for compatibility with ellpk(). * * E(1) = 1; E(0) = pi/2. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC        0, 1       13000       3.1e-17     9.4e-18 *    IEEE       0, 1       10000       2.1e-16     7.3e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * ellpe domain      x<0, x>1            0.0 * *//*							ellpj.c * *	Jacobian Elliptic Functions * * * * SYNOPSIS: * * double u, m, sn, cn, dn, phi; * int ellpj(); * * ellpj( u, m, _&sn, _&cn, _&dn, _&phi ); * * * * DESCRIPTION: * * * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), * and dn(u|m) of parameter m between 0 and 1, and real * argument u. * * These functions are periodic, with quarter-period on the * real axis equal to the complete elliptic integral * ellpk(1.0-m). * * Relation to incomplete elliptic integral: * If u = ellik(phi,m), then sn(u|m) = sin(phi), * and cn(u|m) = cos(phi).  Phi is called the amplitude of u. * * Computation is by means of the arithmetic-geometric mean * algorithm, except when m is within 1e-9 of 0 or 1.  In the * latter case with m close to 1, the approximation applies * only for phi < pi/2. * * ACCURACY: * * Tested at random points with u between 0 and 10, m between * 0 and 1. * *            Absolute error (* = relative error): * arithmetic   function   # trials      peak         rms *    DEC       sn           1800       4.5e-16     8.7e-17 *    IEEE      phi         10000       9.2e-16*    1.4e-16* *    IEEE      sn          50000       4.1e-15     4.6e-16 *    IEEE      cn          40000       3.6e-15     4.4e-16 *    IEEE      dn          10000       1.3e-12     1.8e-14 * *  Peak error observed in consistency check using addition * theorem for sn(u+v) was 4e-16 (absolute).  Also tested by * the above relation to the incomplete elliptic integral. * Accuracy deteriorates when u is large. * *//*							ellpk.c * *	Complete elliptic integral of the first kind * * * * SYNOPSIS: * * double m1, y, ellpk(); * * y = ellpk( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * *            pi/2 *             - *            | | *            |           dt * K(m)  =    |    ------------------ *            |                   2 *          | |    sqrt( 1 - m sin t ) *           - *            0 * * where m = 1 - m1, using the approximation * *     P(x)  -  log x Q(x). * * The argument m1 is used rather than m so that the logarithmic * singularity at m = 1 will be shifted to the origin; this * preserves maximum accuracy. * * K(0) = pi/2. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC        0,1        16000       3.5e-17     1.1e-17 *    IEEE       0,1        30000       2.5e-16     6.8e-17 * * ERROR MESSAGES: * *   message         condition      value returned * ellpk domain       x<0, x>1           0.0 * *//*							euclid.c * *	Rational arithmetic routines * * * * SYNOPSIS: * *  * typedef struct *      { *      double n;  numerator *      double d;  denominator *      }fract; * * radd( a, b, c )      c = b + a * rsub( a, b, c )      c = b - a * rmul( a, b, c )      c = b * a * rdiv( a, b, c )      c = b / a * euclid( &n, &d )     Reduce n/d to lowest terms, *                      return greatest common divisor. * * Arguments of the routines are pointers to the structures. * The double precision numbers are assumed, without checking, * to be integer valued.  Overflow conditions are reported. */ /*							exp.c * *	Exponential function * * * * SYNOPSIS: * * double x, y, exp(); * * y = exp( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * *     x    k  f *    e  = 2  e. * * A Pade' form  1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) * of degree 2/3 is used to approximate exp(f) in the basic * interval [-0.5, 0.5]. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       +- 88       50000       2.8e-17     7.0e-18 *    IEEE      +- 708      40000       2.0e-16     5.6e-17 * * * Error amplification in the exponential function can be * a serious matter.  The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * *   message         condition      value returned * exp underflow    x < MINLOG         0.0 * exp overflow     x > MAXLOG         INFINITY * *//*							exp10.c * *	Base 10 exponential function *      (Common antilogarithm) * * * * SYNOPSIS: * * double x, y, exp10(); * * y = exp10( x ); * * * * DESCRIPTION: * * Returns 10 raised to the x power. * * Range reduction is accomplished by expressing the argument * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2). * The Pade' form * *    1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) * * is used to approximate 10**f. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -307,+307    30000       2.2e-16     5.5e-17 * Test result from an earlier version (2.1): *    DEC       -38,+38     70000       3.1e-17     7.0e-18 * * ERROR MESSAGES: * *   message         condition      value returned * exp10 underflow    x < -MAXL10        0.0 * exp10 overflow     x > MAXL10       MAXNUM * * DEC arithmetic: MAXL10 = 38.230809449325611792. * IEEE arithmetic: MAXL10 = 308.2547155599167. * *//*							exp2.c * *	Base 2 exponential function * * * * SYNOPSIS: * * double x, y, exp2(); * * y = exp2( x ); * * * * DESCRIPTION: * * Returns 2 raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that *     x    k  f *    2  = 2  2. * * A Pade' form * *   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) ) * * approximates 2**x in the basic range [-0.5, 0.5]. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE    -1022,+1024   30000       1.8e-16     5.4e-17 * * * See exp.c for comments on error amplification. * * * ERROR MESSAGES: * *   message         condition      value returned * exp underflow    x < -MAXL2        0.0 * exp overflow     x > MAXL2         MAXNUM * * For DEC arithmetic, MAXL2 = 127. * For IEEE arithmetic, MAXL2 = 1024. *//*							expn.c * *		Exponential integral En * * * * SYNOPSIS: * * int n; * double x, y, expn(); * * y = expn( n, x ); * * * * DESCRIPTION: * * Evaluates the exponential integral * *                 inf. *                   - *                  | |   -xt *                  |    e *      E (x)  =    |    ----  dt. *       n          |      n *                | |     t *                 - *                  1 * * * Both n and x must be nonnegative. * * The routine employs either a power series, a continued * fraction, or an asymptotic formula depending on the * relative values of n and x. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        5000       2.0e-16     4.6e-17 *    IEEE      0, 30       10000       1.7e-15     3.6e-16 * *//*							fabs.c * *		Absolute value * * * * SYNOPSIS: * * double x, y; * * y = fabs( x ); * * * * DESCRIPTION: *  * Returns the absolute value of the argument. * *//*							fac.c * *	Factorial function * * * * SYNOPSIS: * * double y, fac(); * int i; * * y = fac( i ); * * * * DESCRIPTION: * * Returns factorial of i  =  1 * 2 * 3 * ... * i. * fac(0) = 1.0. * * Due to machine arithmetic bounds the largest value of * i accepted is 33 in DEC arithmetic or 170 in IEEE * arithmetic.  Greater values, or negative ones, * produce an error message and return MAXNUM. * * * * ACCURACY: * * For i < 34 the values are simply tabulated, and have * full machine accuracy.  If i > 55, fac(i) = gamma(i+1); * see gamma.c. * *                      Relative error: * arithmetic   domain      peak *    IEEE      0, 170    1.4e-15 *    DEC       0, 33      1.4e-17 * *//*							fdtr.c * *	F distribution * * * * SYNOPSIS: * * int df1, df2; * double x, y, fdtr(); * * y = fdtr( df1, df2, x ); * * DESCRIPTION: * * Returns the area from zero to x under the F density * function (also known as Snedcor's density or the * variance ratio density).  This is the density * of x = (u1/df1)/(u2/df2), where u1 and u2 are random * variables having Chi square distributions with df1 * and df2 degrees of freedom, respectively. * * The incomplete beta integral is used, according to the * formula * *	P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ). * * * The arguments a and b are greater than zero, and x is * nonnegative. * * ACCURACY: * * Tested at random points (a,b,x). * *                x     a,b                     Relative error: * arithmetic  domain  domain     # trials      peak         rms *    IEEE      0,1    0,100       100000      9.8e-15     1.7e-15 *    IEEE      1,5    0,100       100000      6.5e-15     3.5e-16 *    IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12 *    IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13 * See also incbet.c. * * * ERROR MESSAGES: * *   message         condition      value returned * fdtr domain     a<0, b<0, x<0         0.0 * *//*							fdtrc() * *	Complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * double x, y, fdtrc(); * * y = fdtrc( df1, df2, x ); * * DESCRIPTION: * * Returns the area from x to infinity under the F density * function (also known as Snedcor's density or the * variance ratio density). * * *                      inf. *                       - *              1       | |  a-1      b-1 * 1-P(x)  =  ------    |   t    (1-t)    dt *            B(a,b)  | | *                     - *                      x * * * The incomplete beta integral is used, according to the * formula * *	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). * * * ACCURACY: * * Tested at random points (a,b,x) in the indicated intervals. *                x     a,b                     Relative error: * arithmetic  domain  domain     # trials      peak         rms *    IEEE      0,1    1,100       100000      3.7e-14     5.9e-16 *    IEEE      1,5    1,100       100000      8.0e-15     1.6e-15 *    IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13 *    IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12 * See also incbet.c. * * ERROR MESSAGES: * *   message         condition      value returned * fdtrc domain    a<0, b<0, x<0         0.0 * *//*							fdtri() * *	Inverse of complemented F distribution * * * * SYNOPSIS: * * int df1, df2; * double x, p, fdtri(); * * x = fdtri( df1, df2, p ); * * DESCRIPTION: * * Finds the F density argument x such that the integral * from x to infinity of the F density is equal to the * given probability p. * * This is accomplished using the inverse beta integral * function and the relations * *      z = incbi( df2/2, df1/2, p ) *      x = df2 (1-z) / (df1 z). * * Note: the following relations hold for the inverse of * the uncomplemented F distribution: * *      z = incbi( df1/2, df2/2, p ) *      x = df2 z / (df1 (1-z)). * * ACCURACY: * * Tested at random points (a,b,p). * *              a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between .001 and 1: *    IEEE     1,100       100000      8.3e-15     4.7e-16 *    IEEE     1,10000     100000      2.1e-11     1.4e-13 *  For p between 10^-6 and 10^-3: *    IEEE     1,100        50000      1.3e-12     8.4e-15 *    IEEE     1,10000      50000      3.0e-12     4.8e-14 * See also fdtrc.c. * * ERROR MESSAGES: * *   message         condition      value returned * fdtri domain   p <= 0 or p > 1       0.0 *                     v < 1 * *//*							fftr.c * *	FFT of Real Valued Sequence * * * * SYNOPSIS: * * double x[], sine[]; * int m; * * fftr( x, m, sine ); * * * * DESCRIPTION: * * Computes the (complex valued) discrete Fourier transform of * the real valued sequence x[].  The input sequence x[] contains * n = 2**m samples.  The program fills array sine[k] with * n/4 + 1 values of sin( 2 PI k / n ). * * Data format for complex valued output is real part followed * by imaginary part.  The output is developed in the input * array x[]. * * The algorithm takes advantage of the fact that the FFT of an * n point real sequence can be obtained from an n/2 point * complex FFT. * * A radix 2 FFT algorithm is used. * * Execution time on an LSI-11/23 with floating point chip * is 1.0 sec for n = 256. * * * * REFERENCE: * * E. Oran Brigham, The Fast Fourier Transform; * Prentice-Hall, Inc., 1974 * *//*							ceil() *							floor() *							frexp() *							ldexp() *							signbit() *							isnan() *							isfinite() * *	Floating point numeric utilities * * * * SYNOPSIS: * * double ceil(), floor(), frexp(), ldexp(); * int signbit(), isnan(), isfinite(); * double x, y; * int expnt, n; * * y = floor(x); * y = ceil(x); * y = frexp( x, &expnt ); * y = ldexp( x, n ); * n = signbit(x); * n = isnan(x); * n = isfinite(x); * * * * DESCRIPTION: * * All four routines return a double precision floating point * result. * * floor() returns the largest integer less than or equal to x. * It truncates toward minus infinity. * * ceil() returns the smallest integer greater than or equal * to x.  It truncates toward plus infinity. * * frexp() extracts the exponent from x.  It returns an integer * power of two to expnt and the significand between 0.5 and 1 * to y.  Thus  x = y * 2**expn. * * ldexp() multiplies x by 2**n. * * signbit(x) returns 1 if the sign bit of x is 1, else 0. * * These functions are part of the standard C run time library * for many but not all C compilers.  The ones supplied are * written in C for either DEC or IEEE arithmetic.  They should * be used only if your compiler library does not already have * them. * * The IEEE versions assume that denormal numbers are implemented * in the arithmetic.  Some modifications will be required if * the arithmetic has abrupt rather than gradual underflow. *//*							fresnl.c * *	Fresnel integral * * * * SYNOPSIS: * * double x, S, C; * void fresnl(); * * fresnl( x, _&S, _&C ); * * * DESCRIPTION: * * Evaluates the Fresnel integrals * *           x *           - *          | | * C(x) =   |   cos(pi/2 t**2) dt, *        | | *         - *          0 * *           x *           - *          | | * S(x) =   |   sin(pi/2 t**2) dt. *        | | *         - *          0 * * * The integrals are evaluated by a power series for x < 1. * For x >= 1 auxiliary functions f(x) and g(x) are employed * such that * * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 ) * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 ) * * * * ACCURACY: * *  Relative error. * * Arithmetic  function   domain     # trials      peak         rms *   IEEE       S(x)      0, 10       10000       2.0e-15     3.2e-16 *   IEEE       C(x)      0, 10       10000       1.8e-15     3.3e-16 *   DEC        S(x)      0, 10        6000       2.2e-16     3.9e-17 *   DEC        C(x)      0, 10        5000       2.3e-16     3.9e-17 *//*							gamma.c * *	Gamma function * * * * SYNOPSIS: * * double x, y, gamma(); * extern int sgngam; * * y = gamma( x ); * * * * DESCRIPTION: * * Returns gamma function of the argument.  The result is * correctly signed, and the sign (+1 or -1) is also * returned in a global (extern) variable named sgngam. * This variable is also filled in by the logarithmic gamma * function lgam(). * * Arguments |x| <= 34 are reduced by recurrence and the function * approximated by a rational function of degree 6/7 in the * interval (2,3).  Large arguments are handled by Stirling's * formula. Large negative arguments are made positive using * a reflection formula.   * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      -34, 34      10000       1.3e-16     2.5e-17 *    IEEE    -170,-33      20000       2.3e-15     3.3e-16 *    IEEE     -33,  33     20000       9.4e-16     2.2e-16 *    IEEE      33, 171.6   20000       2.3e-15     3.2e-16 * * Error for arguments outside the test range will be larger * owing to error amplification by the exponential function. * *//*							lgam() * *	Natural logarithm of gamma function * * * * SYNOPSIS: * * double x, y, lgam(); * extern int sgngam; * * y = lgam( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. * The sign (+1 or -1) of the gamma function is returned in a * global (extern) variable named sgngam. * * For arguments greater than 13, the logarithm of the gamma * function is approximated by the logarithmic version of * Stirling's formula using a polynomial approximation of * degree 4. Arguments between -33 and +33 are reduced by * recurrence to the interval [2,3] of a rational approximation. * The cosecant reflection formula is employed for arguments * less than -33. * * Arguments greater than MAXLGM return MAXNUM and an error * message.  MAXLGM = 2.035093e36 for DEC * arithmetic or 2.556348e305 for IEEE arithmetic. * * * * ACCURACY: * * * arithmetic      domain        # trials     peak         rms *    DEC     0, 3                  7000     5.2e-17     1.3e-17 *    DEC     2.718, 2.035e36       5000     3.9e-17     9.9e-18 *    IEEE    0, 3                 28000     5.4e-16     1.1e-16 *    IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17 * The error criterion was relative when the function magnitude * was greater than one but absolute when it was less than one. * * The following test used the relative error criterion, though * at certain points the relative error could be much higher than * indicated. *    IEEE    -200, -4             10000     4.8e-16     1.3e-16 * *//*							gdtr.c * *	Gamma distribution function * * * * SYNOPSIS: * * double a, b, x, y, gdtr(); * * y = gdtr( a, b, x ); * * * * DESCRIPTION: * * Returns the integral from zero to x of the gamma probability * density function: * * *                x *        b       - *       a       | |   b-1  -at * y =  -----    |    t    e    dt *       -     | | *      | (b)   - *               0 * *  The incomplete gamma integral is used, according to the * relation * * y = igam( b, ax ). * * * ACCURACY: * * See igam(). * * ERROR MESSAGES: * *   message         condition      value returned * gdtr domain         x < 0            0.0 * *//*							gdtrc.c * *	Complemented gamma distribution function * * * * SYNOPSIS: * * double a, b, x, y, gdtrc(); * * y = gdtrc( a, b, x ); * * * * DESCRIPTION: * * Returns the integral from x to infinity of the gamma * probability density function: * * *               inf. *        b       - *       a       | |   b-1  -at * y =  -----    |    t    e    dt *       -     | | *      | (b)   - *               x * *  The incomplete gamma integral is used, according to the * relation * * y = igamc( b, ax ). * * * ACCURACY: * * See igamc(). * * ERROR MESSAGES: * *   message         condition      value returned * gdtrc domain         x < 0            0.0 * *//*CC     ..................................................................CC        SUBROUTINE GELSCC        PURPOSEC           TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITHC           SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICHC           IS ASSUMED TO BE STORED COLUMNWISE.CC        USAGEC           CALL GELS(R,A,M,N,EPS,IER,AUX)CC        DESCRIPTION OF PARAMETERSC           R      - M BY N RIGHT HAND SIDE MATRIX.  (DESTROYED)C                    ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS.C           A      - UPPER TRIANGULAR PART OF THE SYMMETRICC                    M BY M COEFFICIENT MATRIX.  (DESTROYED)C           M      - THE NUMBER OF EQUATIONS IN THE SYSTEM.C           N      - THE NUMBER OF RIGHT HAND SIDE VECTORS.C           EPS    - AN INPUT CONSTANT WHICH IS USED AS RELATIVEC                    TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.C           IER    - RESULTING ERROR PARAMETER CODED AS FOLLOWSC                    IER=0  - NO ERROR,C                    IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 ORC                             PIVOT ELEMENT AT ANY ELIMINATION STEPC                             EQUAL TO 0,C                    IER=K  - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-C                             CANCE INDICATED AT ELIMINATION STEP K+1,C                             WHERE PIVOT ELEMENT WAS LESS THAN ORC                             EQUAL TO THE INTERNAL TOLERANCE EPS TIMESC                             ABSOLUTELY GREATEST MAIN DIAGONALC                             ELEMENT OF MATRIX A.C           AUX    - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1.CC        REMARKSC           UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STOREDC           COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHTC           HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGEC           LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISEC           TOO.C           THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M ISC           GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPSC           ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -C           INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELLC           SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BEC           INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING ISC           GIVEN IN CASE M=1.C           ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THATC           MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTSC           ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICHC           WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION.CC        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIREDC           NONECC        METHODC           SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITHC           PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVEC           SYMMETRY IN REMAINING COEFFICIENT MATRICES.CC     ..................................................................C*//*							hyp2f1.c * *	Gauss hypergeometric function   F *	                               2 1 * * * SYNOPSIS: * * double a, b, c, x, y, hyp2f1(); * * y = hyp2f1( a, b, c, x ); * * * DESCRIPTION: * * *  hyp2f1( a, b, c, x )  =   F ( a, b; c; x ) *                           2 1 * *           inf. *            -   a(a+1)...(a+k) b(b+1)...(b+k)   k+1 *   =  1 +   >   -----------------------------  x   . *            -         c(c+1)...(c+k) (k+1)! *          k = 0 * *  Cases addressed are *	Tests and escapes for negative integer a, b, or c *	Linear transformation if c - a or c - b negative integer *	Special case c = a or c = b *	Linear transformation for  x near +1 *	Transformation for x < -0.5 *	Psi function expansion if x > 0.5 and c - a - b integer *      Conditionally, a recurrence on c to make c-a-b > 0 * * |x| > 1 is rejected. * * The parameters a, b, c are considered to be integer * valued if they are within 1.0e-14 of the nearest integer * (1.0e-13 for IEEE arithmetic). * * ACCURACY: * * *               Relative error (-1 < x < 1): * arithmetic   domain     # trials      peak         rms *    IEEE      -1,7        230000      1.2e-11     5.2e-14 * * Several special cases also tested with a, b, c in * the range -7 to 7. * * ERROR MESSAGES: * * A "partial loss of precision" message is printed if * the internally estimated relative error exceeds 1^-12. * A "singularity" message is printed on overflow or * in cases not addressed (such as x < -1). *//*							hyperg.c * *	Confluent hypergeometric function * * * * SYNOPSIS: * * double a, b, x, y, hyperg(); * * y = hyperg( a, b, x ); * * * * DESCRIPTION: * * Computes the confluent hypergeometric function * *                          1           2 *                       a x    a(a+1) x *   F ( a,b;x )  =  1 + ---- + --------- + ... *  1 1                  b 1!   b(b+1) 2! * * Many higher transcendental functions are special cases of * this power series. * * As is evident from the formula, b must not be a negative * integer or zero unless a is an integer with 0 >= a > b. * * The routine attempts both a direct summation of the series * and an asymptotic expansion.  In each case error due to * roundoff, cancellation, and nonconvergence is estimated. * The result with smaller estimated error is returned. * * * * ACCURACY: * * Tested at random points (a, b, x), all three variables * ranging from 0 to 30. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,30         2000       1.2e-15     1.3e-16 *    IEEE      0,30        30000       1.8e-14     1.1e-15 * * Larger errors can be observed when b is near a negative * integer or zero.  Certain combinations of arguments yield * serious cancellation error in the power series summation * and also are not in the region of near convergence of the * asymptotic series.  An error message is printed if the * self-estimated relative error is greater than 1.0e-12. * *//*							i0.c * *	Modified Bessel function of order zero * * * * SYNOPSIS: * * double x, y, i0(); * * y = i0( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order zero of the * argument. * * The function is defined as i0(x) = j0( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,30         6000       8.2e-17     1.9e-17 *    IEEE      0,30        30000       5.8e-16     1.4e-16 * *//*							i0e.c * *	Modified Bessel function of order zero, *	exponentially scaled * * * * SYNOPSIS: * * double x, y, i0e(); * * y = i0e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order zero of the argument. * * The function is defined as i0e(x) = exp(-|x|) j0( ix ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,30        30000       5.4e-16     1.2e-16 * See i0(). * *//*							i1.c * *	Modified Bessel function of order one * * * * SYNOPSIS: * * double x, y, i1(); * * y = i1( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order one of the * argument. * * The function is defined as i1(x) = -i j1( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        3400       1.2e-16     2.3e-17 *    IEEE      0, 30       30000       1.9e-15     2.1e-16 * * *//*							i1e.c * *	Modified Bessel function of order one, *	exponentially scaled * * * * SYNOPSIS: * * double x, y, i1e(); * * y = i1e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order one of the argument. * * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       2.0e-15     2.0e-16 * See i1(). * *//*							igam.c * *	Incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igam(); * * y = igam( a, x ); * * DESCRIPTION: * * The function is defined by * *                           x *                            - *                   1       | |  -t  a-1 *  igam(a,x)  =   -----     |   e   t   dt. *                  -      | | *                 | (a)    - *                           0 * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,30       200000       3.6e-14     2.9e-15 *    IEEE      0,100      300000       9.9e-14     1.5e-14 *//*							igamc() * *	Complemented incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igamc(); * * y = igamc( a, x ); * * DESCRIPTION: * * The function is defined by * * *  igamc(a,x)   =   1 - igam(a,x) * *                            inf. *                              - *                     1       | |  -t  a-1 *               =   -----     |   e   t   dt. *                    -      | | *                   | (a)    - *                             x * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY: * * Tested at random a, x. *                a         x                      Relative error: * arithmetic   domain   domain     # trials      peak         rms *    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15 *    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15 *//*							igami() * *      Inverse of complemented imcomplete gamma integral * * * * SYNOPSIS: * * double a, x, p, igami(); * * x = igami( a, p ); * * DESCRIPTION: * * Given p, the function finds x such that * *  igamc( a, x ) = p. * * Starting with the approximate value * *         3 *  x = a t * *  where * *  t = 1 - d - ndtri(p) sqrt(d) *  * and * *  d = 1/9a, * * the routine performs up to 10 Newton iterations to find the * root of igamc(a,x) - p = 0. * * ACCURACY: * * Tested at random a, p in the intervals indicated. * *                a        p                      Relative error: * arithmetic   domain   domain     # trials      peak         rms *    IEEE     0.5,100   0,0.5       100000       1.0e-14     1.7e-15 *    IEEE     0.01,0.5  0,0.5       100000       9.0e-14     3.4e-15 *    IEEE    0.5,10000  0,0.5        20000       2.3e-13     3.8e-14 *//*							incbet.c * *	Incomplete beta integral * * * SYNOPSIS: * * double a, b, x, y, incbet(); * * y = incbet( a, b, x ); * * * DESCRIPTION: * * Returns incomplete beta integral of the arguments, evaluated * from zero to x.  The function is defined as * *                  x *     -            - *    | (a+b)      | |  a-1     b-1 *  -----------    |   t   (1-t)   dt. *   -     -     | | *  | (a) | (b)   - *                 0 * * The domain of definition is 0 <= x <= 1.  In this * implementation a and b are restricted to positive values. * The integral from x to 1 may be obtained by the symmetry * relation * *    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ). * * The integral is evaluated by a continued fraction expansion * or, when b*x is small, by a power series. * * ACCURACY: * * Tested at uniformly distributed random points (a,b,x) with a and b * in "domain" and x between 0 and 1. *                                        Relative error * arithmetic   domain     # trials      peak         rms *    IEEE      0,5         10000       6.9e-15     4.5e-16 *    IEEE      0,85       250000       2.2e-13     1.7e-14 *    IEEE      0,1000      30000       5.3e-12     6.3e-13 *    IEEE      0,10000    250000       9.3e-11     7.1e-12 *    IEEE      0,100000    10000       8.7e-10     4.8e-11 * Outputs smaller than the IEEE gradual underflow threshold * were excluded from these statistics. * * ERROR MESSAGES: *   message         condition      value returned * incbet domain      x<0, x>1          0.0 * incbet underflow                     0.0 *//*							incbi() * *      Inverse of imcomplete beta integral * * * * SYNOPSIS: * * double a, b, x, y, incbi(); * * x = incbi( a, b, y ); * * * * DESCRIPTION: * * Given y, the function finds x such that * *  incbet( a, b, x ) = y . * * The routine performs interval halving or Newton iterations to find the * root of incbet(a,b,x) - y = 0. * * * ACCURACY: * *                      Relative error: *                x     a,b * arithmetic   domain  domain  # trials    peak       rms *    IEEE      0,1    .5,10000   50000    5.8e-12   1.3e-13 *    IEEE      0,1   .25,100    100000    1.8e-13   3.9e-15 *    IEEE      0,1     0,5       50000    1.1e-12   5.5e-15 *    VAX       0,1    .5,100     25000    3.5e-14   1.1e-15 * With a and b constrained to half-integer or integer values: *    IEEE      0,1    .5,10000   50000    5.8e-12   1.1e-13 *    IEEE      0,1    .5,100    100000    1.7e-14   7.9e-16 * With a = .5, b constrained to half-integer or integer values: *    IEEE      0,1    .5,10000   10000    8.3e-11   1.0e-11 *//*							iv.c * *	Modified Bessel function of noninteger order * * * * SYNOPSIS: * * double v, x, y, iv(); * * y = iv( v, x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order v of the * argument.  If x is negative, v must be integer valued. * * The function is defined as Iv(x) = Jv( ix ).  It is * here computed in terms of the confluent hypergeometric * function, according to the formula * *              v  -x * Iv(x) = (x/2)  e   hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1) * * If v is a negative integer, then v is replaced by -v. * * * ACCURACY: * * Tested at random points (v, x), with v between 0 and * 30, x between 0 and 28. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,30          2000      3.1e-15     5.4e-16 *    IEEE      0,30         10000      1.7e-14     2.7e-15 * * Accuracy is diminished if v is near a negative integer. * * See also hyperg.c. * *//*							j0.c * *	Bessel function of order zero * * * * SYNOPSIS: * * double x, y, j0(); * * y = j0( x ); * * * * DESCRIPTION: * * Returns Bessel function of order zero of the argument. * * The domain is divided into the intervals [0, 5] and * (5, infinity). In the first interval the following rational * approximation is used: * * *        2         2 * (w - r  ) (w - r  ) P (w) / Q (w) *       1         2    3       8 * *            2 * where w = x  and the two r's are zeros of the function. * * In the second interval, the Hankel asymptotic expansion * is employed with two rational functions of degree 6/6 * and 7/7. * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30       10000       4.4e-17     6.3e-18 *    IEEE      0, 30       60000       4.2e-16     1.1e-16 * *//*							y0.c * *	Bessel function of the second kind, order zero * * * * SYNOPSIS: * * double x, y, y0(); * * y = y0( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind, of order * zero, of the argument. * * The domain is divided into the intervals [0, 5] and * (5, infinity). In the first interval a rational approximation * R(x) is employed to compute *   y0(x)  = R(x)  +   2 * log(x) * j0(x) / PI. * Thus a call to j0() is required. * * In the second interval, the Hankel asymptotic expansion * is employed with two rational functions of degree 6/6 * and 7/7. * * * * ACCURACY: * *  Absolute error, when y0(x) < 1; else relative error: * * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        9400       7.0e-17     7.9e-18 *    IEEE      0, 30       30000       1.3e-15     1.6e-16 * *//*							j1.c * *	Bessel function of order one * * * * SYNOPSIS: * * double x, y, j1(); * * y = j1( x ); * * * * DESCRIPTION: * * Returns Bessel function of order one of the argument. * * The domain is divided into the intervals [0, 8] and * (8, infinity). In the first interval a 24 term Chebyshev * expansion is used. In the second, the asymptotic * trigonometric representation is employed using two * rational functions of degree 5/5. * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak         rms *    DEC       0, 30       10000       4.0e-17     1.1e-17 *    IEEE      0, 30       30000       2.6e-16     1.1e-16 * * *//*							y1.c * *	Bessel function of second kind of order one * * * * SYNOPSIS: * * double x, y, y1(); * * y = y1( x ); * * * * DESCRIPTION: * * Returns Bessel function of the second kind of order one * of the argument. * * The domain is divided into the intervals [0, 8] and * (8, infinity). In the first interval a 25 term Chebyshev * expansion is used, and a call to j1() is required. * In the second, the asymptotic trigonometric representation * is employed using two rational functions of degree 5/5. * * * * ACCURACY: * *                      Absolute error: * arithmetic   domain      # trials      peak         rms *    DEC       0, 30       10000       8.6e-17     1.3e-17 *    IEEE      0, 30       30000       1.0e-15     1.3e-16 * * (error criterion relative when |y1| > 1). * *//*							jn.c * *	Bessel function of integer order * * * * SYNOPSIS: * * int n; * double x, y, jn(); * * y = jn( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The ratio of jn(x) to j0(x) is computed by backward * recurrence.  First the ratio jn/jn-1 is found by a * continued fraction expansion.  Then the recurrence * relating successive orders is applied until j0 or j1 is * reached. * * If n = 0 or 1 the routine for j0 or j1 is called * directly. * * * * ACCURACY: * *                      Absolute error: * arithmetic   range      # trials      peak         rms *    DEC       0, 30        5500       6.9e-17     9.3e-18 *    IEEE      0, 30        5000       4.4e-16     7.9e-17 * * * Not suitable for large n or x. Use jv() instead. * *//*							jv.c * *	Bessel function of noninteger order * * * * SYNOPSIS: * * double v, x, y, jv(); * * y = jv( v, x ); * * * * DESCRIPTION: * * Returns Bessel function of order v of the argument, * where v is real.  Negative x is allowed if v is an integer. * * Several expansions are included: the ascending power * series, the Hankel expansion, and two transitional * expansions for large v.  If v is not too large, it * is reduced by recurrence to a region of best accuracy. * The transitional expansions give 12D accuracy for v > 500. * * * * ACCURACY: * Results for integer v are indicated by *, where x and v * both vary from -125 to +125.  Otherwise, * x ranges from 0 to 125, v ranges as indicated by "domain." * Error criterion is absolute, except relative when |jv()| > 1. * * arithmetic  v domain  x domain    # trials      peak       rms *    IEEE      0,125     0,125      100000      4.6e-15    2.2e-16 *    IEEE   -125,0       0,125       40000      5.4e-11    3.7e-13 *    IEEE      0,500     0,500       20000      4.4e-15    4.0e-16 * Integer v: *    IEEE   -125,125   -125,125      50000      3.5e-15*   1.9e-16* * *//*							k0.c * *	Modified Bessel function, third kind, order zero * * * * SYNOPSIS: * * double x, y, k0(); * * y = k0( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order zero of the argument. * * The range is partitioned into the two intervals [0,8] and * (8, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Tested at 2000 random points between 0 and 8.  Peak absolute * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        3100       1.3e-16     2.1e-17 *    IEEE      0, 30       30000       1.2e-15     1.6e-16 * * ERROR MESSAGES: * *   message         condition      value returned *  K0 domain          x <= 0          MAXNUM * *//*							k0e() * *	Modified Bessel function, third kind, order zero, *	exponentially scaled * * * * SYNOPSIS: * * double x, y, k0e(); * * y = k0e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order zero of the argument. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       1.4e-15     1.4e-16 * See k0(). * *//*							k1.c * *	Modified Bessel function, third kind, order one * * * * SYNOPSIS: * * double x, y, k1(); * * y = k1( x ); * * * * DESCRIPTION: * * Computes the modified Bessel function of the third kind * of order one of the argument. * * The range is partitioned into the two intervals [0,2] and * (2, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        3300       8.9e-17     2.2e-17 *    IEEE      0, 30       30000       1.2e-15     1.6e-16 * * ERROR MESSAGES: * *   message         condition      value returned * k1 domain          x <= 0          MAXNUM * *//*							k1e.c * *	Modified Bessel function, third kind, order one, *	exponentially scaled * * * * SYNOPSIS: * * double x, y, k1e(); * * y = k1e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order one of the argument: * *      k1e(x) = exp(x) * k1(x). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       7.8e-16     1.2e-16 * See k1(). * *//*							kn.c * *	Modified Bessel function, third kind, integer order * * * * SYNOPSIS: * * double x, y, kn(); * int n; * * y = kn( n, x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order n of the argument. * * The range is partitioned into the two intervals [0,9.55] and * (9.55, infinity).  An ascending power series is used in the * low range, and an asymptotic expansion in the high range. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,30         3000       1.3e-9      5.8e-11 *    IEEE      0,30        90000       1.8e-8      3.0e-10 * *  Error is high only near the crossover point x = 9.55 * between the two expansions used. *//* Re Kolmogorov statistics, here is Birnbaum and Tingey's formula for the   distribution of D+, the maximum of all positive deviations between a   theoretical distribution function P(x) and an empirical one Sn(x)   from n samples.     +    D  =         sup        [ P(x) - Sn(x) ]     n     -inf < x < inf                  [n(1-e)]        +            -                    v-1              n-v    Pr{D   > e} =    >    C    e (e + v/n)    (1 - e - v/n)        n            -   n v                    v=0    [n(1-e)] is the largest integer not exceeding n(1-e).    nCv is the number of combinations of n things taken v at a time. Exact Smirnov statistic, for one-sided test:doublesmirnov (n, e)     int n;     double e;   Kolmogorov's limiting distribution of two-sided test, returns   probability that sqrt(n) * max deviation > y,   or that max deviation > y/sqrt(n).   The approximation is useful for the tail of the distribution   when n is large.doublekolmogorov (y)     double y;   Functional inverse of Smirnov distribution   finds e such that smirnov(n,e) = p.doublesmirnovi (n, p)     int n;     double p;   Functional inverse of Kolmogorov statistic for two-sided test.   Finds y such that kolmogorov(y) = p.   If e = smirnovi (n,p), then kolmogi(2 * p) / sqrt(n) should   be close to e.doublekolmogi (p)     double p;  *//*		Levnsn.c		*//* Levinson-Durbin LPC * * | R0 R1 R2 ... RN-1 |   | A1 |       | -R1 | * | R1 R0 R1 ... RN-2 |   | A2 |       | -R2 | * | R2 R1 R0 ... RN-3 |   | A3 |   =   | -R3 | * |          ...      |   | ...|       | ... | * | RN-1 RN-2... R0   |   | AN |       | -RN | * * Ref: John Makhoul, "Linear Prediction, A Tutorial Review" * Proc. IEEE Vol. 63, PP 561-580 April, 1975. * * R is the input autocorrelation function.  R0 is the zero lag * term.  A is the output array of predictor coefficients.  Note * that a filter impulse response has a coefficient of 1.0 preceding * A1.  E is an array of mean square error for each prediction order * 1 to N.  REFL is an output array of the reflection coefficients. *//*							log.c * *	Natural logarithm * * * * SYNOPSIS: * * double x, y, log(); * * y = log( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of x. * * The argument is separated into its exponent and fractional * parts.  If the exponent is between -1 and +1, the logarithm * of the fraction is approximated by * *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * Otherwise, setting  z = 2(x-1)/x+1), *  *     log(x) = z + z**3 P(z)/Q(z). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0.5, 2.0    150000      1.44e-16    5.06e-17 *    IEEE      +-MAXNUM    30000       1.20e-16    4.78e-17 *    DEC       0, 10       170000      1.8e-17     6.3e-18 * * In the tests over the interval [+-MAXNUM], the logarithms * of the random arguments were uniformly distributed over * [0, MAXLOG]. * * ERROR MESSAGES: * * log singularity:  x = 0; returns -INFINITY * log domain:       x < 0; returns NAN *//*							log10.c * *	Common logarithm * * * * SYNOPSIS: * * double x, y, log10(); * * y = log10( x ); * * * * DESCRIPTION: * * Returns logarithm to the base 10 of x. * * The argument is separated into its exponent and fractional * parts.  The logarithm of the fraction is approximated by * *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0.5, 2.0     30000      1.5e-16     5.0e-17 *    IEEE      0, MAXNUM    30000      1.4e-16     4.8e-17 *    DEC       1, MAXNUM    50000      2.5e-17     6.0e-18 * * In the tests over the interval [1, MAXNUM], the logarithms * of the random arguments were uniformly distributed over * [0, MAXLOG]. * * ERROR MESSAGES: * * log10 singularity:  x = 0; returns -INFINITY * log10 domain:       x < 0; returns NAN *//*							log2.c * *	Base 2 logarithm * * * * SYNOPSIS: * * double x, y, log2(); * * y = log2( x ); * * * * DESCRIPTION: * * Returns the base 2 logarithm of x. * * The argument is separated into its exponent and fractional * parts.  If the exponent is between -1 and +1, the base e * logarithm of the fraction is approximated by * *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * Otherwise, setting  z = 2(x-1)/x+1), *  *     log(x) = z + z**3 P(z)/Q(z). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0.5, 2.0    30000       2.0e-16     5.5e-17 *    IEEE      exp(+-700)  40000       1.3e-16     4.6e-17 * * In the tests over the interval [exp(+-700)], the logarithms * of the random arguments were uniformly distributed. * * ERROR MESSAGES: * * log2 singularity:  x = 0; returns -INFINITY * log2 domain:       x < 0; returns NAN *//*							lrand.c * *	Pseudorandom number generator * * * * SYNOPSIS: * * long y, drand(); * * drand( &y ); * * * * DESCRIPTION: * * Yields a long integer random number. * * The three-generator congruential algorithm by Brian * Wichmann and David Hill (BYTE magazine, March, 1987, * pp 127-8) is used. The period, given by them, is * 6953607871644. * * *//*							lsqrt.c * *	Integer square root * * * * SYNOPSIS: * * long x, y; * long lsqrt(); * * y = lsqrt( x ); * * * * DESCRIPTION: * * Returns a long integer square root of the long integer * argument.  The computation is by binary long division. * * The largest possible result is lsqrt(2,147,483,647) * = 46341. * * If x < 0, the square root of |x| is returned, and an * error message is printed. * * * ACCURACY: * * An extra, roundoff, bit is computed; hence the result * is the nearest integer to the actual square root. * NOTE: only DEC arithmetic is currently supported. * *//*							minv.c * *	Matrix inversion * * * * SYNOPSIS: * * int n, errcod; * double A[n*n], X[n*n]; * double B[n]; * int IPS[n]; * int minv(); * * errcod = minv( A, X, n, B, IPS ); * * * * DESCRIPTION: * * Finds the inverse of the n by n matrix A.  The result goes * to X.   B and IPS are scratch pad arrays of length n. * The contents of matrix A are destroyed. * * The routine returns nonzero on error; error messages are printed * by subroutine simq(). * *//*							mmmpy.c * *	Matrix multiply * * * * SYNOPSIS: * * int r, c; * double A[r*c], B[c*r], Y[r*r]; * * mmmpy( r, c, A, B, Y ); * * * * DESCRIPTION: * * Y = A B *              c-1 *              -- * Y[i][j]  =   >   A[i][k] B[k][j] *              -- *              k=0 * * Multiplies an r (rows) by c (columns) matrix A on the left * by a c (rows) by r (columns) matrix B on the right * to produce an r by r matrix Y. * * *//*							mtherr.c * *	Library common error handling routine * * * * SYNOPSIS: * * char *fctnam; * int code; * int mtherr(); * * mtherr( fctnam, code ); * * * * DESCRIPTION: * * This routine may be called to report one of the following * error conditions (in the include file math.h). *   *   Mnemonic        Value          Significance * *    DOMAIN            1       argument domain error *    SING              2       function singularity *    OVERFLOW          3       overflow range error *    UNDERFLOW         4       underflow range error *    TLOSS             5       total loss of precision *    PLOSS             6       partial loss of precision *    EDOM             33       Unix domain error code *    ERANGE           34       Unix range error code * * The default version of the file prints the function name, * passed to it by the pointer fctnam, followed by the * error condition.  The display is directed to the standard * output device.  The routine then returns to the calling * program.  Users may wish to modify the program to abort by * calling exit() under severe error conditions such as domain * errors. * * Since all error conditions pass control to this function, * the display may be easily changed, eliminated, or directed * to an error logging device. * * SEE ALSO: * * math.h * *//*							mtransp.c * *	Matrix transpose * * * * SYNOPSIS: * * int n; * double A[n*n], T[n*n]; * * mtransp( n, A, T ); * * * * DESCRIPTION: * * * T[r][c] = A[c][r] * * * Transposes the n by n square matrix A and puts the result in T. * The output, T, may occupy the same storage as A. * * * *//*							mvmpy.c * *	Matrix times vector * * * * SYNOPSIS: * * int r, c; * double A[r*c], V[c], Y[r]; * * mvmpy( r, c, A, V, Y ); * * * * DESCRIPTION: * *          c-1 *          -- * Y[j] =   >   A[j][k] V[k] ,  j = 1, ..., r *          -- *          k=0 * * Multiplies the r (rows) by c (columns) matrix A on the left * by column vector V of dimension c on the right * to produce a (column) vector Y output of dimension r. * * * * *//*							nbdtr.c * *	Negative binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, nbdtr(); * * y = nbdtr( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the negative * binomial distribution: * *   k *   --  ( n+j-1 )   n      j *   >   (       )  p  (1-p) *   --  (   j   ) *  j=0 * * In a sequence of Bernoulli trials, this is the probability * that k or fewer failures precede the nth success. * * The terms are not computed individually; instead the incomplete * beta integral is employed, according to the formula * * y = nbdtr( k, n, p ) = incbet( n, k+1, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p), with p between 0 and 1. * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *    IEEE     0,100       100000      1.7e-13     8.8e-15 * See also incbet.c. * *//*							nbdtrc.c * *	Complemented negative binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, nbdtrc(); * * y = nbdtrc( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms k+1 to infinity of the negative * binomial distribution: * *   inf *   --  ( n+j-1 )   n      j *   >   (       )  p  (1-p) *   --  (   j   ) *  j=k+1 * * The terms are not computed individually; instead the incomplete * beta integral is employed, according to the formula * * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p), with p between 0 and 1. * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *    IEEE     0,100       100000      1.7e-13     8.8e-15 * See also incbet.c. *//*							nbdtrc * *	Complemented negative binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, nbdtrc(); * * y = nbdtrc( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms k+1 to infinity of the negative * binomial distribution: * *   inf *   --  ( n+j-1 )   n      j *   >   (       )  p  (1-p) *   --  (   j   ) *  j=k+1 * * The terms are not computed individually; instead the incomplete * beta integral is employed, according to the formula * * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * See incbet.c. *//*							nbdtri * *	Functional inverse of negative binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, nbdtri(); * * p = nbdtri( k, n, y ); * * DESCRIPTION: * * Finds the argument p such that nbdtr(k,n,p) is equal to y. * * ACCURACY: * * Tested at random points (a,b,y), with y between 0 and 1. * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *    IEEE     0,100       100000      1.5e-14     8.5e-16 * See also incbi.c. *//*							ndtr.c * *	Normal distribution function * * * * SYNOPSIS: * * double x, y, ndtr(); * * y = ndtr( x ); * * * * DESCRIPTION: * * Returns the area under the Gaussian probability density * function, integrated from minus infinity to x: * *                            x *                             - *                   1        | |          2 *    ndtr(x)  = ---------    |    exp( - t /2 ) dt *               sqrt(2pi)  | | *                           - *                          -inf. * *             =  ( 1 + erf(z) ) / 2 *             =  erfc(z) / 2 * * where z = x/sqrt(2). Computation is via the functions * erf and erfc. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      -13,0         8000       2.1e-15     4.8e-16 *    IEEE     -13,0        30000       3.4e-14     6.7e-15 * * * ERROR MESSAGES: * *   message         condition         value returned * erfc underflow    x > 37.519379347       0.0 * *//*							erf.c * *	Error function * * * * SYNOPSIS: * * double x, y, erf(); * * y = erf( x ); * * * * DESCRIPTION: * * The integral is * *                           x  *                            - *                 2         | |          2 *   erf(x)  =  --------     |    exp( - t  ) dt. *              sqrt(pi)   | | *                          - *                           0 * * The magnitude of x is limited to 9.231948545 for DEC * arithmetic; 1 or -1 is returned outside this range. * * For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise * erf(x) = 1 - erfc(x). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0,1         14000       4.7e-17     1.5e-17 *    IEEE      0,1         30000       3.7e-16     1.0e-16 * *//*							erfc.c * *	Complementary error function * * * * SYNOPSIS: * * double x, y, erfc(); * * y = erfc( x ); * * * * DESCRIPTION: * * *  1 - erf(x) = * *                           inf.  *                             - *                  2         | |          2 *   erfc(x)  =  --------     |    exp( - t  ) dt *               sqrt(pi)   | | *                           - *                            x * * * For small x, erfc(x) = 1 - erf(x); otherwise rational * approximations are computed. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 9.2319   12000       5.1e-16     1.2e-16 *    IEEE      0,26.6417   30000       5.7e-14     1.5e-14 * * * ERROR MESSAGES: * *   message         condition              value returned * erfc underflow    x > 9.231948545 (DEC)       0.0 * * *//*							ndtri.c * *	Inverse of Normal distribution function * * * * SYNOPSIS: * * double x, y, ndtri(); * * x = ndtri( y ); * * * * DESCRIPTION: * * Returns the argument, x, for which the area under the * Gaussian probability density function (integrated from * minus infinity to x) is equal to y. * * * For small arguments 0 < y < exp(-2), the program computes * z = sqrt( -2.0 * log(y) );  then the approximation is * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z). * There are two rational functions P/Q, one for 0 < y < exp(-32) * and the other for y up to exp(-2).  For larger arguments, * w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). * * * ACCURACY: * *                      Relative error: * arithmetic   domain        # trials      peak         rms *    DEC      0.125, 1         5500       9.5e-17     2.1e-17 *    DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17 *    IEEE     0.125, 1        20000       7.2e-16     1.3e-16 *    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17 * * * ERROR MESSAGES: * *   message         condition    value returned * ndtri domain       x <= 0        -MAXNUM * ndtri domain       x >= 1         MAXNUM * *//*							pdtr.c * *	Poisson distribution * * * * SYNOPSIS: * * int k; * double m, y, pdtr(); * * y = pdtr( k, m ); * * * * DESCRIPTION: * * Returns the sum of the first k terms of the Poisson * distribution: * *   k         j *   --   -m  m *   >   e    -- *   --       j! *  j=0 * * The terms are not summed directly; instead the incomplete * gamma integral is employed, according to the relation * * y = pdtr( k, m ) = igamc( k+1, m ). * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * *//*							pdtrc() * *	Complemented poisson distribution * * * * SYNOPSIS: * * int k; * double m, y, pdtrc(); * * y = pdtrc( k, m ); * * * * DESCRIPTION: * * Returns the sum of the terms k+1 to infinity of the Poisson * distribution: * *  inf.       j *   --   -m  m *   >   e    -- *   --       j! *  j=k+1 * * The terms are not summed directly; instead the incomplete * gamma integral is employed, according to the formula * * y = pdtrc( k, m ) = igam( k+1, m ). * * The arguments must both be positive. * * * * ACCURACY: * * See igam.c. * *//*							pdtri() * *	Inverse Poisson distribution * * * * SYNOPSIS: * * int k; * double m, y, pdtr(); * * m = pdtri( k, y ); * * * * * DESCRIPTION: * * Finds the Poisson variable x such that the integral * from 0 to x of the Poisson density is equal to the * given probability y. * * This is accomplished using the inverse gamma integral * function and the relation * *    m = igami( k+1, y ). * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * *   message         condition      value returned * pdtri domain    y < 0 or y >= 1       0.0 *                     k < 0 * *//*							polevl.c *							p1evl.c * *	Evaluate polynomial * * * * SYNOPSIS: * * int N; * double x, y, coef[N+1], polevl[]; * * y = polevl( x, coef, N ); * * * * DESCRIPTION: * * Evaluates polynomial of degree N: * *                     2          N * y  =  C  + C x + C x  +...+ C x *        0    1     2          N * * Coefficients are stored in reverse order: * * coef[0] = C  , ..., coef[N] = C  . *            N                   0 * *  The function p1evl() assumes that coef[N] = 1.0 and is * omitted from the array.  Its calling arguments are * otherwise the same as polevl(). * * * SPEED: * * In the interest of speed, there are no checks for out * of bounds arithmetic.  This routine is used by most of * the functions in the library.  Depending on available * equipment features, the user may wish to rewrite the * program in microcode or assembly language. * *//*							polmisc.c * Square root, sine, cosine, and arctangent of polynomial. * See polyn.c for data structures and discussion. *//*							polrt.c * *	Find roots of a polynomial * * * * SYNOPSIS: * * typedef struct *	{ *	double r; *	double i; *	}cmplx; * * double xcof[], cof[]; * int m; * cmplx root[]; * * polrt( xcof, cof, m, root ) * * * * DESCRIPTION: * * Iterative determination of the roots of a polynomial of * degree m whose coefficient vector is xcof[].  The * coefficients are arranged in ascending order; i.e., the * coefficient of x**m is xcof[m]. * * The array cof[] is working storage the same size as xcof[]. * root[] is the output array containing the complex roots. * * * ACCURACY: * * Termination depends on evaluation of the polynomial at * the trial values of the roots.  The values of multiple roots * or of roots that are nearly equal may have poor relative * accuracy after the first root in the neighborhood has been * found. * *//*							polyn.c *							polyr.c * Arithmetic operations on polynomials * * In the following descriptions a, b, c are polynomials of degree * na, nb, nc respectively.  The degree of a polynomial cannot * exceed a run-time value MAXPOL.  An operation that attempts * to use or generate a polynomial of higher degree may produce a * result that suffers truncation at degree MAXPOL.  The value of * MAXPOL is set by calling the function * *     polini( maxpol ); * * where maxpol is the desired maximum degree.  This must be * done prior to calling any of the other functions in this module. * Memory for internal temporary polynomial storage is allocated * by polini(). * * Each polynomial is represented by an array containing its * coefficients, together with a separately declared integer equal * to the degree of the polynomial.  The coefficients appear in * ascending order; that is, * *                                        2                      na * a(x)  =  a[0]  +  a[1] * x  +  a[2] * x   +  ...  +  a[na] * x  . * * * * sum = poleva( a, na, x );	Evaluate polynomial a(t) at t = x. * polprt( a, na, D );		Print the coefficients of a to D digits. * polclr( a, na );		Set a identically equal to zero, up to a[na]. * polmov( a, na, b );		Set b = a. * poladd( a, na, b, nb, c );	c = b + a, nc = max(na,nb) * polsub( a, na, b, nb, c );	c = b - a, nc = max(na,nb) * polmul( a, na, b, nb, c );	c = b * a, nc = na+nb * * * Division: * * i = poldiv( a, na, b, nb, c );	c = b / a, nc = MAXPOL * * returns i = the degree of the first nonzero coefficient of a. * The computed quotient c must be divided by x^i.  An error message * is printed if a is identically zero. * * * Change of variables: * If a and b are polynomials, and t = a(x), then *     c(t) = b(a(x)) * is a polynomial found by substituting a(x) for t.  The * subroutine call for this is * * polsbt( a, na, b, nb, c ); * * * Notes: * poldiv() is an integer routine; poleva() is double. * Any of the arguments a, b, c may refer to the same array. * *//*							pow.c * *	Power function * * * * SYNOPSIS: * * double x, y, z, pow(); * * z = pow( x, y ); * * * * DESCRIPTION: * * Computes x raised to the yth power.  Analytically, * *      x**y  =  exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/16 and pseudo extended precision arithmetic to * obtain an extra three bits of accuracy in both the logarithm * and the exponential. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -26,26       30000      4.2e-16      7.7e-17 *    DEC      -26,26       60000      4.8e-17      9.1e-18 * 1/26 < x < 26, with log(x) uniformly distributed. * -26 < y < 26, y uniformly distributed. *    IEEE     0,8700       30000      1.5e-14      2.1e-15 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. * * * ERROR MESSAGES: * *   message         condition      value returned * pow overflow     x**y > MAXNUM      INFINITY * pow underflow   x**y < 1/MAXNUM       0.0 * pow domain      x<0 and y noninteger  0.0 * *//*							powi.c * *	Real raised to integer power * * * * SYNOPSIS: * * double x, y, powi(); * int n; * * y = powi( x, n ); * * * * DESCRIPTION: * * Returns argument x raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x.  Thus to compute the 32767 power of x requires * 28 multiplications instead of 32767 multiplications. * * * * ACCURACY: * * *                      Relative error: * arithmetic   x domain   n domain  # trials      peak         rms *    DEC       .04,26     -26,26    100000       2.7e-16     4.3e-17 *    IEEE      .04,26     -26,26     50000       2.0e-15     3.8e-16 *    IEEE        1,2    -1022,1023   50000       8.6e-14     1.6e-14 * * Returns MAXNUM on overflow, zero on underflow. * *//*							psi.c * *	Psi (digamma) function * * * SYNOPSIS: * * double x, y, psi(); * * y = psi( x ); * * * DESCRIPTION: * *              d      - *   psi(x)  =  -- ln | (x) *              dx * * is the logarithmic derivative of the gamma function. * For integer x, *                   n-1 *                    - * psi(n) = -EUL  +   >  1/k. *                    - *                   k=1 * * This formula is used for 0 < n <= 10.  If x is negative, it * is transformed to a positive argument by the reflection * formula  psi(1-x) = psi(x) + pi cot(pi x). * For general positive x, the argument is made greater than 10 * using the recurrence  psi(x+1) = psi(x) + 1/x. * Then the following asymptotic expansion is applied: * *                           inf.   B *                            -      2k * psi(x) = log(x) - 1/2x -   >   ------- *                            -        2k *                           k=1   2k x * * where the B2k are Bernoulli numbers. * * ACCURACY: *    Relative error (except absolute when |psi| < 1): * arithmetic   domain     # trials      peak         rms *    DEC       0,30         2500       1.7e-16     2.0e-17 *    IEEE      0,30        30000       1.3e-15     1.4e-16 *    IEEE      -30,0       40000       1.5e-15     2.2e-16 * * ERROR MESSAGES: *     message         condition      value returned * psi singularity    x integer <=0      MAXNUM *//*							revers.c * *	Reversion of power series * * * * SYNOPSIS: * * extern int MAXPOL; * int n; * double x[n+1], y[n+1]; * * polini(n); * revers( y, x, n ); * *  Note, polini() initializes the polynomial arithmetic subroutines; *  see polyn.c. * * * DESCRIPTION: * * If * *          inf *           -       i *  y(x)  =  >   a  x *           -    i *          i=1 * * then * *          inf *           -       j *  x(y)  =  >   A  y    , *           -    j *          j=1 * * where *                   1 *         A    =   --- *          1        a *                    1 * * etc.  The coefficients of x(y) are found by expanding * *          inf      inf *           -        -      i *  x(y)  =  >   A    >  a  x *           -    j   -   i *          j=1      i=1 * *  and setting each coefficient of x , higher than the first, *  to zero. * * * * RESTRICTIONS: * *  y[0] must be zero, and y[1] must be nonzero. * *//*						rgamma.c * *	Reciprocal gamma function * * * * SYNOPSIS: * * double x, y, rgamma(); * * y = rgamma( x ); * * * * DESCRIPTION: * * Returns one divided by the gamma function of the argument. * * The function is approximated by a Chebyshev expansion in * the interval [0,1].  Range reduction is by recurrence * for arguments between -34.034 and +34.84425627277176174. * 1/MAXNUM is returned for positive arguments outside this * range.  For arguments less than -34.034 the cosecant * reflection formula is applied; lograrithms are employed * to avoid unnecessary overflow. * * The reciprocal gamma function has no singularities, * but overflow and underflow may occur for large arguments. * These conditions return either MAXNUM or 1/MAXNUM with * appropriate sign. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      -30,+30       4000       1.2e-16     1.8e-17 *    IEEE     -30,+30      30000       1.1e-15     2.0e-16 * For arguments less than -34.034 the peak error is on the * order of 5e-15 (DEC), excepting overflow or underflow. *//*							round.c * *	Round double to nearest or even integer valued double * * * * SYNOPSIS: * * double x, y, round(); * * y = round(x); * * * * DESCRIPTION: * * Returns the nearest integer to x as a double precision * floating point result.  If x ends in 0.5 exactly, the * nearest even integer is chosen. *  * * * ACCURACY: * * If x is greater than 1/(2*MACHEP), its closest machine * representation is already an integer, so rounding does * not change it. *//*							shichi.c * *	Hyperbolic sine and cosine integrals * * * * SYNOPSIS: * * double x, Chi, Shi, shichi(); * * shichi( x, &Chi, &Shi ); * * * DESCRIPTION: * * Approximates the integrals * *                            x *                            - *                           | |   cosh t - 1 *   Chi(x) = eul + ln x +   |    -----------  dt, *                         | |          t *                          - *                          0 * *               x *               - *              | |  sinh t *   Shi(x) =   |    ------  dt *            | |       t *             - *             0 * * where eul = 0.57721566490153286061 is Euler's constant. * The integrals are evaluated by power series for x < 8 * and by Chebyshev expansions for x between 8 and 88. * For large x, both functions approach exp(x)/2x. * Arguments greater than 88 in magnitude return MAXNUM. * * * ACCURACY: * * Test interval 0 to 88. *                      Relative error: * arithmetic   function  # trials      peak         rms *    DEC          Shi       3000       9.1e-17 *    IEEE         Shi      30000       6.9e-16     1.6e-16 *        Absolute error, except relative when |Chi| > 1: *    DEC          Chi       2500       9.3e-17 *    IEEE         Chi      30000       8.4e-16     1.4e-16 *//*							sici.c * *	Sine and cosine integrals * * * * SYNOPSIS: * * double x, Ci, Si, sici(); * * sici( x, &Si, &Ci ); * * * DESCRIPTION: * * Evaluates the integrals * *                          x *                          - *                         |  cos t - 1 *   Ci(x) = eul + ln x +  |  --------- dt, *                         |      t *                        - *                         0 *             x *             - *            |  sin t *   Si(x) =  |  ----- dt *            |    t *           - *            0 * * where eul = 0.57721566490153286061 is Euler's constant. * The integrals are approximated by rational functions. * For x > 8 auxiliary functions f(x) and g(x) are employed * such that * * Ci(x) = f(x) sin(x) - g(x) cos(x) * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x) * * * ACCURACY: *    Test interval = [0,50]. * Absolute error, except relative when > 1: * arithmetic   function   # trials      peak         rms *    IEEE        Si        30000       4.4e-16     7.3e-17 *    IEEE        Ci        30000       6.9e-16     5.1e-17 *    DEC         Si         5000       4.4e-17     9.0e-18 *    DEC         Ci         5300       7.9e-17     5.2e-18 *//*							simpsn.c	*/ * Numerical integration of function tabulated * at equally spaced arguments *//*							simq.c * *	Solution of simultaneous linear equations AX = B *	by Gaussian elimination with partial pivoting * * * * SYNOPSIS: * * double A[n*n], B[n], X[n]; * int n, flag; * int IPS[]; * int simq(); * * ercode = simq( A, B, X, n, flag, IPS ); * * * * DESCRIPTION: * * B, X, IPS are vectors of length n. * A is an n x n matrix (i.e., a vector of length n*n), * stored row-wise: that is, A(i,j) = A[ij], * where ij = i*n + j, which is the transpose of the normal * column-wise storage. * * The contents of matrix A are destroyed. * * Set flag=0 to solve. * Set flag=-1 to do a new back substitution for different B vector * using the same A matrix previously reduced when flag=0. * * The routine returns nonzero on error; messages are printed. * * * ACCURACY: * * Depends on the conditioning (range of eigenvalues) of matrix A. * * * REFERENCE: * * Computer Solution of Linear Algebraic Systems, * by George E. Forsythe and Cleve B. Moler; Prentice-Hall, 1967. * *//*							sin.c * *	Circular sine * * * * SYNOPSIS: * * double x, y, sin(); * * y = sin( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4.  The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by *      x  +  x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as *      1  -  x**2 Q(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    DEC       0, 10       150000       3.0e-17     7.8e-18 *    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17 *  * ERROR MESSAGES: * *   message           condition        value returned * sin total loss   x > 1.073741824e9      0.0 * * Partial loss of accuracy begins to occur at x = 2**30 * = 1.074e9.  The loss is not gradual, but jumps suddenly to * about 1 part in 10e7.  Results may be meaningless for * x > 2**49 = 5.6e14.  The routine as implemented flags a * TLOSS error for x > 2**30 and returns 0.0. *//*							cos.c * *	Circular cosine * * * * SYNOPSIS: * * double x, y, cos(); * * y = cos( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4.  The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by *      1  -  x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as *      x  +  x**3 P(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17 *    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18 *//*							sincos.c * *	Circular sine and cosine of argument in degrees *	Table lookup and interpolation algorithm * * * * SYNOPSIS: * * double x, sine, cosine, flg, sincos(); * * sincos( x, &sine, &cosine, flg ); * * * * DESCRIPTION: * * Returns both the sine and the cosine of the argument x. * Several different compile time options and minimax * approximations are supplied to permit tailoring the * tradeoff between computation speed and accuracy. *  * Since range reduction is time consuming, the reduction * of x modulo 360 degrees is also made optional. * * sin(i) is internally tabulated for 0 <= i <= 90 degrees. * Approximation polynomials, ranging from linear interpolation * to cubics in (x-i)**2, compute the sine and cosine * of the residual x-i which is between -0.5 and +0.5 degree. * In the case of the high accuracy options, the residual * and the tabulated values are combined using the trigonometry * formulas for sin(A+B) and cos(A+B). * * Compile time options are supplied for 5, 11, or 17 decimal * relative accuracy (ACC5, ACC11, ACC17 respectively). * A subroutine flag argument "flg" chooses betwen this * accuracy and table lookup only (peak absolute error * = 0.0087). * * If the argument flg = 1, then the tabulated value is * returned for the nearest whole number of degrees. The * approximation polynomials are not computed.  At * x = 0.5 deg, the absolute error is then sin(0.5) = 0.0087. * * An intermediate speed and precision can be obtained using * the compile time option LINTERP and flg = 1.  This yields * a linear interpolation using a slope estimated from the sine * or cosine at the nearest integer argument.  The peak absolute * error with this option is 3.8e-5.  Relative error at small * angles is about 1e-5. * * If flg = 0, then the approximation polynomials are computed * and applied. * * * * SPEED: * * Relative speed comparisons follow for 6MHz IBM AT clone * and Microsoft C version 4.0.  These figures include * software overhead of do loop and function calls. * Since system hardware and software vary widely, the * numbers should be taken as representative only. * *			flg=0	flg=0	flg=1	flg=1 *			ACC11	ACC5	LINTERP	Lookup only * In-line 8087 (/FPi) * sin(), cos()		1.0	1.0	1.0	1.0 * * In-line 8087 (/FPi) * sincos()		1.1	1.4	1.9	3.0 * * Software (/FPa) * sin(), cos()		0.19	0.19	0.19	0.19 * * Software (/FPa) * sincos()		0.39	0.50	0.73	1.7 * * * * ACCURACY: * * The accurate approximations are designed with a relative error * criterion.  The absolute error is greatest at x = 0.5 degree. * It decreases from a local maximum at i+0.5 degrees to full * machine precision at each integer i degrees.  With the * ACC5 option, the relative error of 6.3e-6 is equivalent to * an absolute angular error of 0.01 arc second in the argument * at x = i+0.5 degrees.  For small angles < 0.5 deg, the ACC5 * accuracy is 6.3e-6 (.00063%) of reading; i.e., the absolute * error decreases in proportion to the argument.  This is true * for both the sine and cosine approximations, since the latter * is for the function 1 - cos(x). * * If absolute error is of most concern, use the compile time * option ABSERR to obtain an absolute error of 2.7e-8 for ACC5 * precision.  This is about half the absolute error of the * relative precision option.  In this case the relative error * for small angles will increase to 9.5e-6 -- a reasonable * tradeoff. *//*							sindg.c * *	Circular sine of angle in degrees * * * * SYNOPSIS: * * double x, y, sindg(); * * y = sindg( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of 45 degrees. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by *      x  +  x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as *      1  -  x**2 P(x**2). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    DEC       +-1000        3100      3.3e-17      9.0e-18 *    IEEE      +-1000       30000      2.3e-16      5.6e-17 *  * ERROR MESSAGES: * *   message           condition        value returned * sindg total loss   x > 8.0e14 (DEC)      0.0 *                    x > 1.0e14 (IEEE) * *//*							cosdg.c * *	Circular cosine of angle in degrees * * * * SYNOPSIS: * * double x, y, cosdg(); * * y = cosdg( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of 45 degrees. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by *      1  -  x**2 P(x**2). * Between pi/4 and pi/2 the sine is represented as *      x  +  x**3 P(x**2). * * * ACCURACY: * *                      Relative error: * arithmetic   domain      # trials      peak         rms *    DEC      +-1000         3400       3.5e-17     9.1e-18 *    IEEE     +-1000        30000       2.1e-16     5.7e-17 *  See also sin(). * *//*							sinh.c * *	Hyperbolic sine * * * * SYNOPSIS: * * double x, y, sinh(); * * y = sinh( x ); * * * * DESCRIPTION: * * Returns hyperbolic sine of argument in the range MINLOG to * MAXLOG. * * The range is partitioned into two segments.  If |x| <= 1, a * rational function of the form x + x**3 P(x)/Q(x) is employed. * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      +- 88        50000       4.0e-17     7.7e-18 *    IEEE     +-MAXLOG     30000       2.6e-16     5.7e-17 * *//*							spence.c * *	Dilogarithm * * * * SYNOPSIS: * * double x, y, spence(); * * y = spence( x ); * * * * DESCRIPTION: * * Computes the integral * *                    x *                    - *                   | | log t * spence(x)  =  -   |   ----- dt *                 | |   t - 1 *                  - *                  1 * * for x >= 0.  A rational approximation gives the integral in * the interval (0.5, 1.5).  Transformation formulas for 1/x * and 1-x are employed outside the basic expansion range. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,4         30000       3.9e-15     5.4e-16 *    DEC       0,4          3000       2.5e-16     4.5e-17 * * *//*							sqrt.c * *	Square root * * * * SYNOPSIS: * * double x, y, sqrt(); * * y = sqrt( x ); * * * * DESCRIPTION: * * Returns the square root of x. * * Range reduction involves isolating the power of two of the * argument and using a polynomial approximation to obtain * a rough value for the square root.  Then Heron's iteration * is used three times to converge to an accurate value. * * * * ACCURACY: * * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 10       60000       2.1e-17     7.9e-18 *    IEEE      0,1.7e308   30000       1.7e-16     6.3e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * sqrt domain        x < 0            0.0 * *//*							stdtr.c * *	Student's t distribution * * * * SYNOPSIS: * * double t, stdtr(); * short k; * * y = stdtr( k, t ); * * * DESCRIPTION: * * Computes the integral from minus infinity to t of the Student * t distribution with integer k > 0 degrees of freedom: * *                                      t *                                      - *                                     | | *              -                      |         2   -(k+1)/2 *             | ( (k+1)/2 )           |  (     x   ) *       ----------------------        |  ( 1 + --- )        dx *                     -               |  (      k  ) *       sqrt( k pi ) | ( k/2 )        | *                                   | | *                                    - *                                   -inf. *  * Relation to incomplete beta integral: * *        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) * where *        z = k/(k + t**2). * * For t < -2, this is the method of computation.  For higher t, * a direct method is derived from integration by parts. * Since the function is symmetric about t=0, the area under the * right tail of the density is found by calling the function * with -t instead of t. *  * ACCURACY: * * Tested at random 1 <= k <= 25.  The "domain" refers to t. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -100,-2      50000       5.9e-15     1.4e-15 *    IEEE     -2,100      500000       2.7e-15     4.9e-17 *//*							stdtri.c * *	Functional inverse of Student's t distribution * * * * SYNOPSIS: * * double p, t, stdtri(); * int k; * * t = stdtri( k, p ); * * * DESCRIPTION: * * Given probability p, finds the argument t such that stdtr(k,t) * is equal to p. *  * ACCURACY: * * Tested at random 1 <= k <= 100.  The "domain" refers to p: *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE    .001,.999     25000       5.7e-15     8.0e-16 *    IEEE    10^-6,.001    25000       2.0e-12     2.9e-14 *//*							struve.c * *      Struve function * * * * SYNOPSIS: * * double v, x, y, struve(); * * y = struve( v, x ); * * * * DESCRIPTION: * * Computes the Struve function Hv(x) of order v, argument x. * Negative x is rejected unless v is an integer. * * This module also contains the hypergeometric functions 1F2 * and 3F0 and a routine for the Bessel function Yv(x) with * noninteger v. * * * * ACCURACY: * * Not accurately characterized, but spot checked against tables. * *//*							tan.c * *	Circular tangent * * * * SYNOPSIS: * * double x, y, tan(); * * y = tan( x ); * * * * DESCRIPTION: * * Returns the circular tangent of the radian argument x. * * Range reduction is modulo pi/4.  A rational function *       x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      +-1.07e9      44000      4.1e-17     1.0e-17 *    IEEE     +-1.07e9      30000      2.9e-16     8.1e-17 * * ERROR MESSAGES: * *   message         condition          value returned * tan total loss   x > 1.073741824e9     0.0 * *//*							cot.c * *	Circular cotangent * * * * SYNOPSIS: * * double x, y, cot(); * * y = cot( x ); * * * * DESCRIPTION: * * Returns the circular cotangent of the radian argument x. * * Range reduction is modulo pi/4.  A rational function *       x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     +-1.07e9      30000      2.9e-16     8.2e-17 * * * ERROR MESSAGES: * *   message         condition          value returned * cot total loss   x > 1.073741824e9       0.0 * cot singularity  x = 0                  INFINITY * *//*							tandg.c * *	Circular tangent of argument in degrees * * * * SYNOPSIS: * * double x, y, tandg(); * * y = tandg( x ); * * * * DESCRIPTION: * * Returns the circular tangent of the argument x in degrees. * * Range reduction is modulo pi/4.  A rational function *       x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC      0,10          8000      3.4e-17      1.2e-17 *    IEEE     0,10         30000      3.2e-16      8.4e-17 * * ERROR MESSAGES: * *   message         condition          value returned * tandg total loss   x > 8.0e14 (DEC)      0.0 *                    x > 1.0e14 (IEEE) * tandg singularity  x = 180 k  +  90     MAXNUM *//*							cotdg.c * *	Circular cotangent of argument in degrees * * * * SYNOPSIS: * * double x, y, cotdg(); * * y = cotdg( x ); * * * * DESCRIPTION: * * Returns the circular cotangent of the argument x in degrees. * * Range reduction is modulo pi/4.  A rational function *       x + x**3 P(x**2)/Q(x**2) * is employed in the basic interval [0, pi/4]. * * * ERROR MESSAGES: * *   message         condition          value returned * cotdg total loss   x > 8.0e14 (DEC)      0.0 *                    x > 1.0e14 (IEEE) * cotdg singularity  x = 180 k            MAXNUM *//*							tanh.c * *	Hyperbolic tangent * * * * SYNOPSIS: * * double x, y, tanh(); * * y = tanh( x ); * * * * DESCRIPTION: * * Returns hyperbolic tangent of argument in the range MINLOG to * MAXLOG. * * A rational function is used for |x| < 0.625.  The form * x + x**3 P(x)/Q(x) of Cody _& Waite is employed. * Otherwise, *    tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -2,2        50000       3.3e-17     6.4e-18 *    IEEE      -2,2        30000       2.5e-16     5.8e-17 * *//*							unity.c * * Relative error approximations for function arguments near * unity. * *    log1p(x) = log(1+x) *    expm1(x) = exp(x) - 1 *    cosm1(x) = cos(x) - 1 * *//*							yn.c * *	Bessel function of second kind of integer order * * * * SYNOPSIS: * * double x, y, yn(); * int n; * * y = yn( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The function is evaluated by forward recurrence on * n, starting with values computed by the routines * y0() and y1(). * * If n = 0 or 1 the routine for y0 or y1 is called * directly. * * * * ACCURACY: * * *                      Absolute error, except relative *                      when y > 1: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        2200       2.9e-16     5.3e-17 *    IEEE      0, 30       30000       3.4e-15     4.3e-16 * * * ERROR MESSAGES: * *   message         condition      value returned * yn singularity   x = 0              MAXNUM * yn overflow                         MAXNUM * * Spot checked against tables for x, n between 0 and 100. * *//*							zeta.c * *	Riemann zeta function of two arguments * * * * SYNOPSIS: * * double x, q, y, zeta(); * * y = zeta( x, q ); * * * * DESCRIPTION: * * * *                 inf. *                  -        -x *   zeta(x,q)  =   >   (k+q)   *                  - *                 k=0 * * where x > 1 and q is not a negative integer or zero. * The Euler-Maclaurin summation formula is used to obtain * the expansion * *                n          *                -       -x * zeta(x,q)  =   >  (k+q)   *                -          *               k=1         * *           1-x                 inf.  B   x(x+1)...(x+2j) *      (n+q)           1         -     2j *  +  ---------  -  -------  +   >    -------------------- *        x-1              x      -                   x+2j+1 *                   2(n+q)      j=1       (2j)! (n+q) * * where the B2j are Bernoulli numbers.  Note that (see zetac.c) * zeta(x,1) = zetac(x) + 1. * * * * ACCURACY: * * * * REFERENCE: * * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, * Series, and Products, p. 1073; Academic Press, 1980. * */ /*							zetac.c * *	Riemann zeta function * * * * SYNOPSIS: * * double x, y, zetac(); * * y = zetac( x ); * * * * DESCRIPTION: * * * *                inf. *                 -    -x *   zetac(x)  =   >   k   ,   x > 1, *                 - *                k=2 * * is related to the Riemann zeta function by * *	Riemann zeta(x) = zetac(x) + 1. * * Extension of the function definition for x < 1 is implemented. * Zero is returned for x > log2(MAXNUM). * * An overflow error may occur for large negative x, due to the * gamma function in the reflection formula. * * ACCURACY: * * Tabulated values have full machine accuracy. * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      1,50        10000       9.8e-16	    1.3e-16 *    DEC       1,50         2000       1.1e-16     1.9e-17 * * */
 |