| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043 | /*							clog.c * *	Complex natural logarithm * * * * SYNOPSIS: * * void clog(); * cmplx z, w; * * clog( &z, &w ); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then *       w = log(r) + i arctan(y/x). *  * The arctangent ranges from -PI to +PI. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      7000       8.5e-17     1.9e-17 *    IEEE      -10,+10     30000       5.0e-15     1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1995, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTstatic void cchsh ( double x, double *c, double *s );static double redupi ( double x );static double ctans ( cmplx *z );/* These are supposed to be in some standard place. */double fabs (double);double sqrt (double);double pow (double, double);double log (double);double exp (double);double atan2 (double, double);double cosh (double);double sinh (double);double asin (double);double sin (double);double cos (double);double cabs (cmplx *);void cadd ( cmplx *, cmplx *, cmplx * );void cmul ( cmplx *, cmplx *, cmplx * );void csqrt ( cmplx *, cmplx * );static void cchsh ( double, double *, double * );static double redupi ( double );static double ctans ( cmplx * );void clog ( cmplx *, cmplx * );void casin ( cmplx *, cmplx * );void cacos ( cmplx *, cmplx * );void catan ( cmplx *, cmplx * );#elsestatic void cchsh();static double redupi();static double ctans();double cabs(), fabs(), sqrt(), pow();double log(), exp(), atan2(), cosh(), sinh();double asin(), sin(), cos();void cadd(), cmul(), csqrt();void clog(), casin(), cacos(), catan();#endifextern double MAXNUM, MACHEP, PI, PIO2;void clog( z, w )register cmplx *z, *w;{double p, rr;/*rr = sqrt( z->r * z->r  +  z->i * z->i );*/rr = cabs(z);p = log(rr);#if ANSICrr = atan2( z->i, z->r );#elserr = atan2( z->r, z->i );if( rr > PI )	rr -= PI + PI;#endifw->i = rr;w->r = p;}/*							cexp() * *	Complex exponential function * * * * SYNOPSIS: * * void cexp(); * cmplx z, w; * * cexp( &z, &w ); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If *     z = x + iy, *     r = exp(x), * * then * *     w = r cos y + i r sin y. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8700       3.7e-17     1.1e-17 *    IEEE      -10,+10     30000       3.0e-16     8.7e-17 * */void cexp( z, w )register cmplx *z, *w;{double r;r = exp( z->r );w->r = r * cos( z->i );w->i = r * sin( z->i );}/*							csin() * *	Complex circular sine * * * * SYNOPSIS: * * void csin(); * cmplx z, w; * * csin( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = sin x  cosh y  +  i cos x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8400       5.3e-17     1.3e-17 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16 * Also tested by csin(casin(z)) = z. * */void csin( z, w )register cmplx *z, *w;{double ch, sh;cchsh( z->i, &ch, &sh );w->r = sin( z->r ) * ch;w->i = cos( z->r ) * sh;}/* calculate cosh and sinh */static void cchsh( x, c, s )double x, *c, *s;{double e, ei;if( fabs(x) <= 0.5 )	{	*c = cosh(x);	*s = sinh(x);	}else	{	e = exp(x);	ei = 0.5/e;	e = 0.5 * e;	*s = e - ei;	*c = e + ei;	}}/*							ccos() * *	Complex circular cosine * * * * SYNOPSIS: * * void ccos(); * cmplx z, w; * * ccos( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = cos x  cosh y  -  i sin x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8400       4.5e-17     1.3e-17 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16 */void ccos( z, w )register cmplx *z, *w;{double ch, sh;cchsh( z->i, &ch, &sh );w->r = cos( z->r ) * ch;w->i = -sin( z->r ) * sh;}/*							ctan() * *	Complex circular tangent * * * * SYNOPSIS: * * void ctan(); * cmplx z, w; * * ctan( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  +  i sinh 2y *     w  =  --------------------. *            cos 2x  +  cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2.  The denominator is evaluated by its Taylor * series near these points. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200       7.1e-17     1.6e-17 *    IEEE      -10,+10     30000       7.2e-16     1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z. */void ctan( z, w )register cmplx *z, *w;{double d;d = cos( 2.0 * z->r ) + cosh( 2.0 * z->i );if( fabs(d) < 0.25 )	d = ctans(z);if( d == 0.0 )	{	mtherr( "ctan", OVERFLOW );	w->r = MAXNUM;	w->i = MAXNUM;	return;	}w->r = sin( 2.0 * z->r ) / d;w->i = sinh( 2.0 * z->i ) / d;}/*							ccot() * *	Complex circular cotangent * * * * SYNOPSIS: * * void ccot(); * cmplx z, w; * * ccot( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  -  i sinh 2y *     w  =  --------------------. *            cosh 2y  -  cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2.  Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      3000       6.5e-17     1.6e-17 *    IEEE      -10,+10     30000       9.2e-16     1.2e-16 * Also tested by ctan * ccot = 1 + i0. */void ccot( z, w )register cmplx *z, *w;{double d;d = cosh(2.0 * z->i) - cos(2.0 * z->r);if( fabs(d) < 0.25 )	d = ctans(z);if( d == 0.0 )	{	mtherr( "ccot", OVERFLOW );	w->r = MAXNUM;	w->i = MAXNUM;	return;	}w->r = sin( 2.0 * z->r ) / d;w->i = -sinh( 2.0 * z->i ) / d;}/* Program to subtract nearest integer multiple of PI *//* extended precision value of PI: */#ifdef UNKstatic double DP1 = 3.14159265160560607910E0;static double DP2 = 1.98418714791870343106E-9;static double DP3 = 1.14423774522196636802E-17;#endif#ifdef DECstatic unsigned short P1[] = {0040511,0007732,0120000,0000000,};static unsigned short P2[] = {0031010,0055060,0100000,0000000,};static unsigned short P3[] = {0022123,0011431,0105056,0001560,};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef IBMPCstatic unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009};static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21};static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef MIEEEstatic unsigned short P1[] = {0x4009,0x21fb,0x5400,0x0000};static unsigned short P2[] = {0x3e21,0x0b46,0x1000,0x0000};static unsigned short P3[] = {0x3c6a,0x6263,0x3145,0xc06e};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endifstatic double redupi(x)double x;{double t;long i;t = x/PI;if( t >= 0.0 )	t += 0.5;else	t -= 0.5;i = t;	/* the multiple */t = i;t = ((x - t * DP1) - t * DP2) - t * DP3;return(t);}/*  Taylor series expansion for cosh(2y) - cos(2x)	*/static double ctans(z)cmplx *z;{double f, x, x2, y, y2, rn, t;double d;x = fabs( 2.0 * z->r );y = fabs( 2.0 * z->i );x = redupi(x);x = x * x;y = y * y;x2 = 1.0;y2 = 1.0;f = 1.0;rn = 0.0;d = 0.0;do	{	rn += 1.0;	f *= rn;	rn += 1.0;	f *= rn;	x2 *= x;	y2 *= y;	t = y2 + x2;	t /= f;	d += t;	rn += 1.0;	f *= rn;	rn += 1.0;	f *= rn;	x2 *= x;	y2 *= y;	t = y2 - x2;	t /= f;	d += t;	}while( fabs(t/d) > MACHEP );return(d);}/*							casin() * *	Complex circular arc sine * * * * SYNOPSIS: * * void casin(); * cmplx z, w; * * casin( &z, &w ); * * * * DESCRIPTION: * * Inverse complex sine: * *                               2 * w = -i clog( iz + csqrt( 1 - z ) ). * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10     10100       2.1e-15     3.4e-16 *    IEEE      -10,+10     30000       2.2e-14     2.7e-15 * Larger relative error can be observed for z near zero. * Also tested by csin(casin(z)) = z. */void casin( z, w )cmplx *z, *w;{static cmplx ca, ct, zz, z2;double x, y;x = z->r;y = z->i;if( y == 0.0 )	{	if( fabs(x) > 1.0 )		{		w->r = PIO2;		w->i = 0.0;		mtherr( "casin", DOMAIN );		}	else		{		w->r = asin(x);		w->i = 0.0;		}	return;	}/* Power series expansion *//*b = cabs(z);if( b < 0.125 ){z2.r = (x - y) * (x + y);z2.i = 2.0 * x * y;cn = 1.0;n = 1.0;ca.r = x;ca.i = y;sum.r = x;sum.i = y;do	{	ct.r = z2.r * ca.r  -  z2.i * ca.i;	ct.i = z2.r * ca.i  +  z2.i * ca.r;	ca.r = ct.r;	ca.i = ct.i;	cn *= n;	n += 1.0;	cn /= n;	n += 1.0;	b = cn/n;	ct.r *= b;	ct.i *= b;	sum.r += ct.r;	sum.i += ct.i;	b = fabs(ct.r) + fabs(ct.i);	}while( b > MACHEP );w->r = sum.r;w->i = sum.i;return;}*/ca.r = x;ca.i = y;ct.r = -ca.i;	/* iz */ct.i = ca.r;	/* sqrt( 1 - z*z) *//* cmul( &ca, &ca, &zz ) */zz.r = (ca.r - ca.i) * (ca.r + ca.i);	/*x * x  -  y * y */zz.i = 2.0 * ca.r * ca.i;zz.r = 1.0 - zz.r;zz.i = -zz.i;csqrt( &zz, &z2 );cadd( &z2, &ct, &zz );clog( &zz, &zz );w->r = zz.i;	/* mult by 1/i = -i */w->i = -zz.r;return;}/*							cacos() * *	Complex circular arc cosine * * * * SYNOPSIS: * * void cacos(); * cmplx z, w; * * cacos( &z, &w ); * * * * DESCRIPTION: * * * w = arccos z  =  PI/2 - arcsin z. * * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200      1.6e-15      2.8e-16 *    IEEE      -10,+10     30000      1.8e-14      2.2e-15 */void cacos( z, w )cmplx *z, *w;{casin( z, w );w->r = PIO2  -  w->r;w->i = -w->i;}/*							catan() * *	Complex circular arc tangent * * * * SYNOPSIS: * * void catan(); * cmplx z, w; * * catan( &z, &w ); * * * * DESCRIPTION: * * If *     z = x + iy, * * then *          1       (    2x     ) * Re w  =  - arctan(-----------)  +  k PI *          2       (     2    2) *                  (1 - x  - y ) * *               ( 2         2) *          1    (x  +  (y+1) ) * Im w  =  - log(------------) *          4    ( 2         2) *               (x  +  (y-1) ) * * Where k is an arbitrary integer. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5900       1.3e-16     7.8e-18 *    IEEE      -10,+10     30000       2.3e-15     8.5e-17 * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17.  See also clog(). */void catan( z, w )cmplx *z, *w;{double a, t, x, x2, y;x = z->r;y = z->i;if( (x == 0.0) && (y > 1.0) )	goto ovrf;x2 = x * x;a = 1.0 - x2 - (y * y);if( a == 0.0 )	goto ovrf;#if ANSICt = atan2( 2.0 * x, a )/2.0;#elset = atan2( a, 2.0 * x )/2.0;#endifw->r = redupi( t );t = y - 1.0;a = x2 + (t * t);if( a == 0.0 )	goto ovrf;t = y + 1.0;a = (x2 + (t * t))/a;w->i = log(a)/4.0;return;ovrf:mtherr( "catan", OVERFLOW );w->r = MAXNUM;w->i = MAXNUM;}/*							csinh * *	Complex hyperbolic sine * * * * SYNOPSIS: * * void csinh(); * cmplx z, w; * * csinh( &z, &w ); * * * DESCRIPTION: * * csinh z = (cexp(z) - cexp(-z))/2 *         = sinh x * cos y  +  i cosh x * sin y . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       3.1e-16     8.2e-17 * */voidcsinh (z, w)     cmplx *z, *w;{  double x, y;  x = z->r;  y = z->i;  w->r = sinh (x) * cos (y);  w->i = cosh (x) * sin (y);}/*							casinh * *	Complex inverse hyperbolic sine * * * * SYNOPSIS: * * void casinh(); * cmplx z, w; * * casinh (&z, &w); * * * * DESCRIPTION: * * casinh z = -i casin iz . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.8e-14     2.6e-15 * */voidcasinh (z, w)     cmplx *z, *w;{  cmplx u;  u.r = 0.0;  u.i = 1.0;  cmul( z, &u, &u );  casin( &u, w );  u.r = 0.0;  u.i = -1.0;  cmul( &u, w, w );}/*							ccosh * *	Complex hyperbolic cosine * * * * SYNOPSIS: * * void ccosh(); * cmplx z, w; * * ccosh (&z, &w); * * * * DESCRIPTION: * * ccosh(z) = cosh x  cos y + i sinh x sin y . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       2.9e-16     8.1e-17 * */voidccosh (z, w)     cmplx *z, *w;{  double x, y;  x = z->r;  y = z->i;  w->r = cosh (x) * cos (y);  w->i = sinh (x) * sin (y);}/*							cacosh * *	Complex inverse hyperbolic cosine * * * * SYNOPSIS: * * void cacosh(); * cmplx z, w; * * cacosh (&z, &w); * * * * DESCRIPTION: * * acosh z = i acos z . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.6e-14     2.1e-15 * */voidcacosh (z, w)     cmplx *z, *w;{  cmplx u;  cacos( z, w );  u.r = 0.0;  u.i = 1.0;  cmul( &u, w, w );}/*							ctanh * *	Complex hyperbolic tangent * * * * SYNOPSIS: * * void ctanh(); * cmplx z, w; * * ctanh (&z, &w); * * * * DESCRIPTION: * * tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.7e-14     2.4e-16 * *//* 5.253E-02,1.550E+00 1.643E+01,6.553E+00 1.729E-14  21355  */voidctanh (z, w)     cmplx *z, *w;{  double x, y, d;  x = z->r;  y = z->i;  d = cosh (2.0 * x) + cos (2.0 * y);  w->r = sinh (2.0 * x) / d;  w->i = sin (2.0 * y) / d;  return;}/*							catanh * *	Complex inverse hyperbolic tangent * * * * SYNOPSIS: * * void catanh(); * cmplx z, w; * * catanh (&z, &w); * * * * DESCRIPTION: * * Inverse tanh, equal to  -i catan (iz); * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       2.3e-16     6.2e-17 * */voidcatanh (z, w)     cmplx *z, *w;{  cmplx u;  u.r = 0.0;  u.i = 1.0;  cmul (z, &u, &u);  /* i z */  catan (&u, w);  u.r = 0.0;  u.i = -1.0;  cmul (&u, w, w);  /* -i catan iz */  return;}/*							cpow * *	Complex power function * * * * SYNOPSIS: * * void cpow(); * cmplx a, z, w; * * cpow (&a, &z, &w); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       9.4e-15     1.5e-15 * */voidcpow (a, z, w)     cmplx *a, *z, *w;{  double x, y, r, theta, absa, arga;  x = z->r;  y = z->i;  absa = cabs (a);  if (absa == 0.0)    {      w->r = 0.0;      w->i = 0.0;      return;    }  arga = atan2 (a->i, a->r);  r = pow (absa, x);  theta = x * arga;  if (y != 0.0)    {      r = r * exp (-y * arga);      theta = theta + y * log (absa);    }  w->r = r * cos (theta);  w->i = r * sin (theta);  return;}
 |