| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 | /*							ellpe.c * *	Complete elliptic integral of the second kind * * * * SYNOPSIS: * * double m1, y, ellpe(); * * y = ellpe( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * *            pi/2 *             - *            | |                 2 * E(m)  =    |    sqrt( 1 - m sin t ) dt *          | |     *           - *            0 * * Where m = 1 - m1, using the approximation * *      P(x)  -  x log x Q(x). * * Though there are no singularities, the argument m1 is used * rather than m for compatibility with ellpk(). * * E(1) = 1; E(0) = pi/2. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC        0, 1       13000       3.1e-17     9.4e-18 *    IEEE       0, 1       10000       2.1e-16     7.3e-17 * * * ERROR MESSAGES: * *   message         condition      value returned * ellpe domain      x<0, x>1            0.0 * *//*							ellpe.c		*//* Elliptic integral of second kind *//*Cephes Math Library, Release 2.8: June, 2000Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef UNKstatic double P[] = {  1.53552577301013293365E-4,  2.50888492163602060990E-3,  8.68786816565889628429E-3,  1.07350949056076193403E-2,  7.77395492516787092951E-3,  7.58395289413514708519E-3,  1.15688436810574127319E-2,  2.18317996015557253103E-2,  5.68051945617860553470E-2,  4.43147180560990850618E-1,  1.00000000000000000299E0};static double Q[] = {  3.27954898576485872656E-5,  1.00962792679356715133E-3,  6.50609489976927491433E-3,  1.68862163993311317300E-2,  2.61769742454493659583E-2,  3.34833904888224918614E-2,  4.27180926518931511717E-2,  5.85936634471101055642E-2,  9.37499997197644278445E-2,  2.49999999999888314361E-1};#endif#ifdef DECstatic unsigned short P[] = {0035041,0001364,0141572,0117555,0036044,0066032,0130027,0033404,0036416,0053617,0064456,0102632,0036457,0161100,0061177,0122612,0036376,0136251,0012403,0124162,0036370,0101316,0151715,0131613,0036475,0105477,0050317,0133272,0036662,0154232,0024645,0171552,0037150,0126220,0047054,0030064,0037742,0162057,0167645,0165612,0040200,0000000,0000000,0000000};static unsigned short Q[] = {0034411,0106743,0115771,0055462,0035604,0052575,0155171,0045540,0036325,0030424,0064332,0167756,0036612,0052366,0063006,0115175,0036726,0070430,0004533,0124654,0037011,0022741,0030675,0030711,0037056,0174452,0127062,0132122,0037157,0177750,0142041,0072523,0037277,0177777,0173137,0002627,0037577,0177777,0177777,0101101};#endif#ifdef IBMPCstatic unsigned short P[] = {0x53ee,0x986f,0x205e,0x3f24,0xe6e0,0x5602,0x8d83,0x3f64,0xd0b3,0xed25,0xcaf1,0x3f81,0xf4b1,0x0c4f,0xfc48,0x3f85,0x750e,0x22a0,0xd795,0x3f7f,0xb671,0xda79,0x1059,0x3f7f,0xf6d7,0xea19,0xb167,0x3f87,0xbe6d,0x4534,0x5b13,0x3f96,0x8607,0x09c5,0x1592,0x3fad,0xbd71,0xfdf4,0x5c85,0x3fdc,0x0000,0x0000,0x0000,0x3ff0};static unsigned short Q[] = {0x2b66,0x737f,0x31bc,0x3f01,0x296c,0xbb4f,0x8aaf,0x3f50,0x5dfe,0x8d1b,0xa622,0x3f7a,0xd350,0xccc0,0x4a9e,0x3f91,0x7535,0x012b,0xce23,0x3f9a,0xa639,0x2637,0x24bc,0x3fa1,0x568a,0x55c6,0xdf25,0x3fa5,0x2eaa,0x1884,0xfffd,0x3fad,0xe0b3,0xfecb,0xffff,0x3fb7,0xf048,0xffff,0xffff,0x3fcf};#endif#ifdef MIEEEstatic unsigned short P[] = {0x3f24,0x205e,0x986f,0x53ee,0x3f64,0x8d83,0x5602,0xe6e0,0x3f81,0xcaf1,0xed25,0xd0b3,0x3f85,0xfc48,0x0c4f,0xf4b1,0x3f7f,0xd795,0x22a0,0x750e,0x3f7f,0x1059,0xda79,0xb671,0x3f87,0xb167,0xea19,0xf6d7,0x3f96,0x5b13,0x4534,0xbe6d,0x3fad,0x1592,0x09c5,0x8607,0x3fdc,0x5c85,0xfdf4,0xbd71,0x3ff0,0x0000,0x0000,0x0000};static unsigned short Q[] = {0x3f01,0x31bc,0x737f,0x2b66,0x3f50,0x8aaf,0xbb4f,0x296c,0x3f7a,0xa622,0x8d1b,0x5dfe,0x3f91,0x4a9e,0xccc0,0xd350,0x3f9a,0xce23,0x012b,0x7535,0x3fa1,0x24bc,0x2637,0xa639,0x3fa5,0xdf25,0x55c6,0x568a,0x3fad,0xfffd,0x1884,0x2eaa,0x3fb7,0xffff,0xfecb,0xe0b3,0x3fcf,0xffff,0xffff,0xf048};#endif#ifdef ANSIPROTextern double polevl ( double, void *, int );extern double log ( double );#elsedouble polevl(), log();#endifdouble ellpe(x)double x;{if( (x <= 0.0) || (x > 1.0) )	{	if( x == 0.0 )		return( 1.0 );	mtherr( "ellpe", DOMAIN );	return( 0.0 );	}return( polevl(x,P,10) - log(x) * (x * polevl(x,Q,9)) );}
 |