| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 | /*							igam.c * *	Incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igam(); * * y = igam( a, x ); * * DESCRIPTION: * * The function is defined by * *                           x *                            - *                   1       | |  -t  a-1 *  igam(a,x)  =   -----     |   e   t   dt. *                  -      | | *                 | (a)    - *                           0 * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0,30       200000       3.6e-14     2.9e-15 *    IEEE      0,100      300000       9.9e-14     1.5e-14 *//*							igamc() * *	Complemented incomplete gamma integral * * * * SYNOPSIS: * * double a, x, y, igamc(); * * y = igamc( a, x ); * * DESCRIPTION: * * The function is defined by * * *  igamc(a,x)   =   1 - igam(a,x) * *                            inf. *                              - *                     1       | |  -t  a-1 *               =   -----     |   e   t   dt. *                    -      | | *                   | (a)    - *                             x * * * In this implementation both arguments must be positive. * The integral is evaluated by either a power series or * continued fraction expansion, depending on the relative * values of a and x. * * ACCURACY: * * Tested at random a, x. *                a         x                      Relative error: * arithmetic   domain   domain     # trials      peak         rms *    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15 *    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15 *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1985, 1987, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern double lgam ( double );extern double exp ( double );extern double log ( double );extern double fabs ( double );extern double igam ( double, double );extern double igamc ( double, double );#elsedouble lgam(), exp(), log(), fabs(), igam(), igamc();#endifextern double MACHEP, MAXLOG;static double big = 4.503599627370496e15;static double biginv =  2.22044604925031308085e-16;double igamc( a, x )double a, x;{double ans, ax, c, yc, r, t, y, z;double pk, pkm1, pkm2, qk, qkm1, qkm2;if( (x <= 0) || ( a <= 0) )	return( 1.0 );if( (x < 1.0) || (x < a) )	return( 1.0 - igam(a,x) );ax = a * log(x) - x - lgam(a);if( ax < -MAXLOG )	{	mtherr( "igamc", UNDERFLOW );	return( 0.0 );	}ax = exp(ax);/* continued fraction */y = 1.0 - a;z = x + y + 1.0;c = 0.0;pkm2 = 1.0;qkm2 = x;pkm1 = x + 1.0;qkm1 = z * x;ans = pkm1/qkm1;do	{	c += 1.0;	y += 1.0;	z += 2.0;	yc = y * c;	pk = pkm1 * z  -  pkm2 * yc;	qk = qkm1 * z  -  qkm2 * yc;	if( qk != 0 )		{		r = pk/qk;		t = fabs( (ans - r)/r );		ans = r;		}	else		t = 1.0;	pkm2 = pkm1;	pkm1 = pk;	qkm2 = qkm1;	qkm1 = qk;	if( fabs(pk) > big )		{		pkm2 *= biginv;		pkm1 *= biginv;		qkm2 *= biginv;		qkm1 *= biginv;		}	}while( t > MACHEP );return( ans * ax );}/* left tail of incomplete gamma function: * *          inf.      k *   a  -x   -       x *  x  e     >   ---------- *           -     - *          k=0   | (a+k+1) * */double igam( a, x )double a, x;{double ans, ax, c, r;if( (x <= 0) || ( a <= 0) )	return( 0.0 );if( (x > 1.0) && (x > a ) )	return( 1.0 - igamc(a,x) );/* Compute  x**a * exp(-x) / gamma(a)  */ax = a * log(x) - x - lgam(a);if( ax < -MAXLOG )	{	mtherr( "igam", UNDERFLOW );	return( 0.0 );	}ax = exp(ax);/* power series */r = a;c = 1.0;ans = 1.0;do	{	r += 1.0;	c *= x/r;	ans += c;	}while( c/ans > MACHEP );return( ans * ax/a );}
 |