| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 | /*							incbet.c * *	Incomplete beta integral * * * SYNOPSIS: * * double a, b, x, y, incbet(); * * y = incbet( a, b, x ); * * * DESCRIPTION: * * Returns incomplete beta integral of the arguments, evaluated * from zero to x.  The function is defined as * *                  x *     -            - *    | (a+b)      | |  a-1     b-1 *  -----------    |   t   (1-t)   dt. *   -     -     | | *  | (a) | (b)   - *                 0 * * The domain of definition is 0 <= x <= 1.  In this * implementation a and b are restricted to positive values. * The integral from x to 1 may be obtained by the symmetry * relation * *    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ). * * The integral is evaluated by a continued fraction expansion * or, when b*x is small, by a power series. * * ACCURACY: * * Tested at uniformly distributed random points (a,b,x) with a and b * in "domain" and x between 0 and 1. *                                        Relative error * arithmetic   domain     # trials      peak         rms *    IEEE      0,5         10000       6.9e-15     4.5e-16 *    IEEE      0,85       250000       2.2e-13     1.7e-14 *    IEEE      0,1000      30000       5.3e-12     6.3e-13 *    IEEE      0,10000    250000       9.3e-11     7.1e-12 *    IEEE      0,100000    10000       8.7e-10     4.8e-11 * Outputs smaller than the IEEE gradual underflow threshold * were excluded from these statistics. * * ERROR MESSAGES: *   message         condition      value returned * incbet domain      x<0, x>1          0.0 * incbet underflow                     0.0 *//*Cephes Math Library, Release 2.8:  June, 2000Copyright 1984, 1995, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef DEC#define MAXGAM 34.84425627277176174#else#define MAXGAM 171.624376956302725#endifextern double MACHEP, MINLOG, MAXLOG;#ifdef ANSIPROTextern double gamma ( double );extern double lgam ( double );extern double exp ( double );extern double log ( double );extern double pow ( double, double );extern double fabs ( double );static double incbcf(double, double, double);static double incbd(double, double, double);static double pseries(double, double, double);#elsedouble gamma(), lgam(), exp(), log(), pow(), fabs();static double incbcf(), incbd(), pseries();#endifstatic double big = 4.503599627370496e15;static double biginv =  2.22044604925031308085e-16;double incbet( aa, bb, xx )double aa, bb, xx;{double a, b, t, x, xc, w, y;int flag;if( aa <= 0.0 || bb <= 0.0 )	goto domerr;if( (xx <= 0.0) || ( xx >= 1.0) )	{	if( xx == 0.0 )		return(0.0);	if( xx == 1.0 )		return( 1.0 );domerr:	mtherr( "incbet", DOMAIN );	return( 0.0 );	}flag = 0;if( (bb * xx) <= 1.0 && xx <= 0.95)	{	t = pseries(aa, bb, xx);		goto done;	}w = 1.0 - xx;/* Reverse a and b if x is greater than the mean. */if( xx > (aa/(aa+bb)) )	{	flag = 1;	a = bb;	b = aa;	xc = xx;	x = w;	}else	{	a = aa;	b = bb;	xc = w;	x = xx;	}if( flag == 1 && (b * x) <= 1.0 && x <= 0.95)	{	t = pseries(a, b, x);	goto done;	}/* Choose expansion for better convergence. */y = x * (a+b-2.0) - (a-1.0);if( y < 0.0 )	w = incbcf( a, b, x );else	w = incbd( a, b, x ) / xc;/* Multiply w by the factor     a      b   _             _     _    x  (1-x)   | (a+b) / ( a | (a) | (b) ) .   */y = a * log(x);t = b * log(xc);if( (a+b) < MAXGAM && fabs(y) < MAXLOG && fabs(t) < MAXLOG )	{	t = pow(xc,b);	t *= pow(x,a);	t /= a;	t *= w;	t *= gamma(a+b) / (gamma(a) * gamma(b));	goto done;	}/* Resort to logarithms.  */y += t + lgam(a+b) - lgam(a) - lgam(b);y += log(w/a);if( y < MINLOG )	t = 0.0;else	t = exp(y);done:if( flag == 1 )	{	if( t <= MACHEP )		t = 1.0 - MACHEP;	else		t = 1.0 - t;	}return( t );}/* Continued fraction expansion #1 * for incomplete beta integral */static double incbcf( a, b, x )double a, b, x;{double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;double k1, k2, k3, k4, k5, k6, k7, k8;double r, t, ans, thresh;int n;k1 = a;k2 = a + b;k3 = a;k4 = a + 1.0;k5 = 1.0;k6 = b - 1.0;k7 = k4;k8 = a + 2.0;pkm2 = 0.0;qkm2 = 1.0;pkm1 = 1.0;qkm1 = 1.0;ans = 1.0;r = 1.0;n = 0;thresh = 3.0 * MACHEP;do	{		xk = -( x * k1 * k2 )/( k3 * k4 );	pk = pkm1 +  pkm2 * xk;	qk = qkm1 +  qkm2 * xk;	pkm2 = pkm1;	pkm1 = pk;	qkm2 = qkm1;	qkm1 = qk;	xk = ( x * k5 * k6 )/( k7 * k8 );	pk = pkm1 +  pkm2 * xk;	qk = qkm1 +  qkm2 * xk;	pkm2 = pkm1;	pkm1 = pk;	qkm2 = qkm1;	qkm1 = qk;	if( qk != 0 )		r = pk/qk;	if( r != 0 )		{		t = fabs( (ans - r)/r );		ans = r;		}	else		t = 1.0;	if( t < thresh )		goto cdone;	k1 += 1.0;	k2 += 1.0;	k3 += 2.0;	k4 += 2.0;	k5 += 1.0;	k6 -= 1.0;	k7 += 2.0;	k8 += 2.0;	if( (fabs(qk) + fabs(pk)) > big )		{		pkm2 *= biginv;		pkm1 *= biginv;		qkm2 *= biginv;		qkm1 *= biginv;		}	if( (fabs(qk) < biginv) || (fabs(pk) < biginv) )		{		pkm2 *= big;		pkm1 *= big;		qkm2 *= big;		qkm1 *= big;		}	}while( ++n < 300 );cdone:return(ans);}/* Continued fraction expansion #2 * for incomplete beta integral */static double incbd( a, b, x )double a, b, x;{double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;double k1, k2, k3, k4, k5, k6, k7, k8;double r, t, ans, z, thresh;int n;k1 = a;k2 = b - 1.0;k3 = a;k4 = a + 1.0;k5 = 1.0;k6 = a + b;k7 = a + 1.0;;k8 = a + 2.0;pkm2 = 0.0;qkm2 = 1.0;pkm1 = 1.0;qkm1 = 1.0;z = x / (1.0-x);ans = 1.0;r = 1.0;n = 0;thresh = 3.0 * MACHEP;do	{		xk = -( z * k1 * k2 )/( k3 * k4 );	pk = pkm1 +  pkm2 * xk;	qk = qkm1 +  qkm2 * xk;	pkm2 = pkm1;	pkm1 = pk;	qkm2 = qkm1;	qkm1 = qk;	xk = ( z * k5 * k6 )/( k7 * k8 );	pk = pkm1 +  pkm2 * xk;	qk = qkm1 +  qkm2 * xk;	pkm2 = pkm1;	pkm1 = pk;	qkm2 = qkm1;	qkm1 = qk;	if( qk != 0 )		r = pk/qk;	if( r != 0 )		{		t = fabs( (ans - r)/r );		ans = r;		}	else		t = 1.0;	if( t < thresh )		goto cdone;	k1 += 1.0;	k2 -= 1.0;	k3 += 2.0;	k4 += 2.0;	k5 += 1.0;	k6 += 1.0;	k7 += 2.0;	k8 += 2.0;	if( (fabs(qk) + fabs(pk)) > big )		{		pkm2 *= biginv;		pkm1 *= biginv;		qkm2 *= biginv;		qkm1 *= biginv;		}	if( (fabs(qk) < biginv) || (fabs(pk) < biginv) )		{		pkm2 *= big;		pkm1 *= big;		qkm2 *= big;		qkm1 *= big;		}	}while( ++n < 300 );cdone:return(ans);}/* Power series for incomplete beta integral.   Use when b*x is small and x not too close to 1.  */static double pseries( a, b, x )double a, b, x;{double s, t, u, v, n, t1, z, ai;ai = 1.0 / a;u = (1.0 - b) * x;v = u / (a + 1.0);t1 = v;t = u;n = 2.0;s = 0.0;z = MACHEP * ai;while( fabs(v) > z )	{	u = (n - b) * x / n;	t *= u;	v = t / (a + n);	s += v; 	n += 1.0;	}s += t1;s += ai;u = a * log(x);if( (a+b) < MAXGAM && fabs(u) < MAXLOG )	{	t = gamma(a+b)/(gamma(a)*gamma(b));	s = s * t * pow(x,a);	}else	{	t = lgam(a+b) - lgam(a) - lgam(b) + u + log(s);	if( t < MINLOG )		s = 0.0;	else	s = exp(t);	}return(s);}
 |