| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 | /*							powi.c * *	Real raised to integer power * * * * SYNOPSIS: * * double x, y, powi(); * int n; * * y = powi( x, n ); * * * * DESCRIPTION: * * Returns argument x raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x.  Thus to compute the 32767 power of x requires * 28 multiplications instead of 32767 multiplications. * * * * ACCURACY: * * *                      Relative error: * arithmetic   x domain   n domain  # trials      peak         rms *    DEC       .04,26     -26,26    100000       2.7e-16     4.3e-17 *    IEEE      .04,26     -26,26     50000       2.0e-15     3.8e-16 *    IEEE        1,2    -1022,1023   50000       8.6e-14     1.6e-14 * * Returns MAXNUM on overflow, zero on underflow. * *//*							powi.c	*//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1995, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern double log ( double );extern double frexp ( double, int * );extern int signbit ( double );#elsedouble log(), frexp();int signbit();#endifextern double NEGZERO, INFINITY, MAXNUM, MAXLOG, MINLOG, LOGE2;double powi( x, nn )double x;int nn;{int n, e, sign, asign, lx;double w, y, s;/* See pow.c for these tests.  */if( x == 0.0 )	{	if( nn == 0 )		return( 1.0 );	else if( nn < 0 )	    return( INFINITY );	else	  {	    if( nn & 1 )	      return( x );	    else	      return( 0.0 );	  }	}if( nn == 0 )	return( 1.0 );if( nn == -1 )	return( 1.0/x );if( x < 0.0 )	{	asign = -1;	x = -x;	}else	asign = 0;if( nn < 0 )	{	sign = -1;	n = -nn;	}else	{	sign = 1;	n = nn;	}/* Even power will be positive. */if( (n & 1) == 0 )	asign = 0;/* Overflow detection *//* Calculate approximate logarithm of answer */s = frexp( x, &lx );e = (lx - 1)*n;if( (e == 0) || (e > 64) || (e < -64) )	{	s = (s - 7.0710678118654752e-1) / (s +  7.0710678118654752e-1);	s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2;	}else	{	s = LOGE2 * e;	}if( s > MAXLOG )	{	mtherr( "powi", OVERFLOW );	y = INFINITY;	goto done;	}#if DENORMALif( s < MINLOG )	{	y = 0.0;	goto done;	}/* Handle tiny denormal answer, but with less accuracy * since roundoff error in 1.0/x will be amplified. * The precise demarcation should be the gradual underflow threshold. */if( (s < (-MAXLOG+2.0)) && (sign < 0) )	{	x = 1.0/x;	sign = -sign;	}#else/* do not produce denormal answer */if( s < -MAXLOG )	return(0.0);#endif/* First bit of the power */if( n & 1 )	y = x;		else	y = 1.0;w = x;n >>= 1;while( n )	{	w = w * w;	/* arg to the 2-to-the-kth power */	if( n & 1 )	/* if that bit is set, then include in product */		y *= w;	n >>= 1;	}if( sign < 0 )	y = 1.0/y;done:if( asign )	{	/* odd power of negative number */	if( y == 0.0 )		y = NEGZERO;	else		y = -y;	}return(y);}
 |