| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599 | /*							shichi.c * *	Hyperbolic sine and cosine integrals * * * * SYNOPSIS: * * double x, Chi, Shi, shichi(); * * shichi( x, &Chi, &Shi ); * * * DESCRIPTION: * * Approximates the integrals * *                            x *                            - *                           | |   cosh t - 1 *   Chi(x) = eul + ln x +   |    -----------  dt, *                         | |          t *                          - *                          0 * *               x *               - *              | |  sinh t *   Shi(x) =   |    ------  dt *            | |       t *             - *             0 * * where eul = 0.57721566490153286061 is Euler's constant. * The integrals are evaluated by power series for x < 8 * and by Chebyshev expansions for x between 8 and 88. * For large x, both functions approach exp(x)/2x. * Arguments greater than 88 in magnitude return MAXNUM. * * * ACCURACY: * * Test interval 0 to 88. *                      Relative error: * arithmetic   function  # trials      peak         rms *    DEC          Shi       3000       9.1e-17 *    IEEE         Shi      30000       6.9e-16     1.6e-16 *        Absolute error, except relative when |Chi| > 1: *    DEC          Chi       2500       9.3e-17 *    IEEE         Chi      30000       8.4e-16     1.4e-16 *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef UNK/* x exp(-x) shi(x), inverted interval 8 to 18 */static double S1[] = { 1.83889230173399459482E-17,-9.55485532279655569575E-17, 2.04326105980879882648E-16, 1.09896949074905343022E-15,-1.31313534344092599234E-14, 5.93976226264314278932E-14,-3.47197010497749154755E-14,-1.40059764613117131000E-12, 9.49044626224223543299E-12,-1.61596181145435454033E-11,-1.77899784436430310321E-10, 1.35455469767246947469E-9,-1.03257121792819495123E-9,-3.56699611114982536845E-8, 1.44818877384267342057E-7, 7.82018215184051295296E-7,-5.39919118403805073710E-6,-3.12458202168959833422E-5, 8.90136741950727517826E-5, 2.02558474743846862168E-3, 2.96064440855633256972E-2, 1.11847751047257036625E0};/* x exp(-x) shi(x), inverted interval 18 to 88 */static double S2[] = {-1.05311574154850938805E-17, 2.62446095596355225821E-17, 8.82090135625368160657E-17,-3.38459811878103047136E-16,-8.30608026366935789136E-16, 3.93397875437050071776E-15, 1.01765565969729044505E-14,-4.21128170307640802703E-14,-1.60818204519802480035E-13, 3.34714954175994481761E-13, 2.72600352129153073807E-12, 1.66894954752839083608E-12,-3.49278141024730899554E-11,-1.58580661666482709598E-10,-1.79289437183355633342E-10, 1.76281629144264523277E-9, 1.69050228879421288846E-8, 1.25391771228487041649E-7, 1.16229947068677338732E-6, 1.61038260117376323993E-5, 3.49810375601053973070E-4, 1.28478065259647610779E-2, 1.03665722588798326712E0};#endif#ifdef DECstatic unsigned short S1[] = {0022251,0115635,0165120,0006574,0122734,0050751,0020305,0101356,0023153,0111154,0011103,0177462,0023636,0060321,0060253,0124246,0124554,0106655,0152525,0166400,0025205,0140145,0171006,0106556,0125034,0056427,0004205,0176022,0126305,0016731,0025011,0134453,0027046,0172453,0112604,0116235,0127216,0022071,0116600,0137667,0130103,0115126,0071104,0052535,0030672,0025450,0010071,0141414,0130615,0165136,0132137,0177737,0132031,0031611,0074436,0175407,0032433,0077602,0104345,0060076,0033121,0165741,0167177,0172433,0133665,0025262,0174621,0022612,0134403,0006761,0124566,0145405,0034672,0126332,0034737,0116744,0036004,0137654,0037332,0131766,0036762,0104466,0121445,0124326,0040217,0025105,0062145,0042640};static unsigned short S2[] = {0122102,0041774,0016051,0055137,0022362,0010125,0007651,0015773,0022713,0062551,0040227,0071645,0123303,0015732,0025731,0146570,0123557,0064016,0002067,0067711,0024215,0136214,0132374,0124234,0024467,0051425,0071066,0064210,0125075,0124305,0135123,0024170,0125465,0010261,0005560,0034232,0025674,0066602,0030724,0174557,0026477,0151520,0051510,0067250,0026352,0161076,0113154,0116271,0127431,0116470,0177465,0127274,0130056,0056174,0170315,0013321,0130105,0020575,0075327,0036710,0030762,0043625,0113046,0125035,0031621,0033211,0154354,0022077,0032406,0121555,0074270,0041141,0033234,0000116,0041611,0173743,0034207,0013263,0174715,0115563,0035267,0063300,0175753,0117266,0036522,0077633,0033255,0136200,0040204,0130457,0014454,0166254};#endif#ifdef IBMPCstatic unsigned short S1[] = {0x01b0,0xbd4a,0x3373,0x3c75,0xb05e,0x2418,0x8a3d,0xbc9b,0x7fe6,0x8248,0x724d,0x3cad,0x7515,0x2c15,0xcc1a,0x3cd3,0xbda0,0xbaaa,0x91b5,0xbd0d,0xd1ae,0xbe40,0xb80c,0x3d30,0xbf82,0xe110,0x8ba2,0xbd23,0x3725,0x2541,0xa3bb,0xbd78,0x9394,0x72b0,0xdea5,0x3da4,0x17f7,0x33b0,0xc487,0xbdb1,0x8aac,0xce48,0x734a,0xbde8,0x3862,0x0207,0x4565,0x3e17,0xfffc,0xd68b,0xbd4b,0xbe11,0xdf61,0x2f23,0x2671,0xbe63,0xac08,0x511c,0x6ff0,0x3e83,0xfea3,0x3dcf,0x3d7c,0x3eaa,0x24b1,0x5f32,0xa556,0xbed6,0xd961,0x352e,0x61be,0xbf00,0xf3bd,0x473b,0x559b,0x3f17,0x567f,0x87db,0x97f5,0x3f60,0xb51b,0xd464,0x5126,0x3f9e,0xa8b4,0xac8c,0xe548,0x3ff1};static unsigned short S2[] = {0x2b4c,0x8385,0x487f,0xbc68,0x237f,0xa1f5,0x420a,0x3c7e,0xee75,0x2812,0x6cad,0x3c99,0x39af,0x457b,0x637b,0xbcb8,0xedf9,0xc086,0xed01,0xbccd,0x9513,0x969f,0xb791,0x3cf1,0xcd11,0xae46,0xea62,0x3d06,0x650f,0xb74a,0xb518,0xbd27,0x0713,0x216e,0xa216,0xbd46,0x9f2e,0x463a,0x8db0,0x3d57,0x0dd5,0x0a69,0xfa6a,0x3d87,0x9397,0xd2cd,0x5c47,0x3d7d,0xb5d8,0x1fe6,0x33a7,0xbdc3,0xa2da,0x9e19,0xcb8f,0xbde5,0xe7b9,0xaf5a,0xa42f,0xbde8,0xd544,0xb2c4,0x48f2,0x3e1e,0x8488,0x3b1d,0x26d1,0x3e52,0x084c,0xaf17,0xd46d,0x3e80,0x3efc,0xc871,0x8009,0x3eb3,0xb36e,0x7f39,0xe2d6,0x3ef0,0x73d7,0x1f7d,0xecd8,0x3f36,0xb790,0x66d5,0x4ff3,0x3f8a,0x9d96,0xe325,0x9625,0x3ff0};#endif#ifdef MIEEEstatic unsigned short S1[] = {0x3c75,0x3373,0xbd4a,0x01b0,0xbc9b,0x8a3d,0x2418,0xb05e,0x3cad,0x724d,0x8248,0x7fe6,0x3cd3,0xcc1a,0x2c15,0x7515,0xbd0d,0x91b5,0xbaaa,0xbda0,0x3d30,0xb80c,0xbe40,0xd1ae,0xbd23,0x8ba2,0xe110,0xbf82,0xbd78,0xa3bb,0x2541,0x3725,0x3da4,0xdea5,0x72b0,0x9394,0xbdb1,0xc487,0x33b0,0x17f7,0xbde8,0x734a,0xce48,0x8aac,0x3e17,0x4565,0x0207,0x3862,0xbe11,0xbd4b,0xd68b,0xfffc,0xbe63,0x2671,0x2f23,0xdf61,0x3e83,0x6ff0,0x511c,0xac08,0x3eaa,0x3d7c,0x3dcf,0xfea3,0xbed6,0xa556,0x5f32,0x24b1,0xbf00,0x61be,0x352e,0xd961,0x3f17,0x559b,0x473b,0xf3bd,0x3f60,0x97f5,0x87db,0x567f,0x3f9e,0x5126,0xd464,0xb51b,0x3ff1,0xe548,0xac8c,0xa8b4};static unsigned short S2[] = {0xbc68,0x487f,0x8385,0x2b4c,0x3c7e,0x420a,0xa1f5,0x237f,0x3c99,0x6cad,0x2812,0xee75,0xbcb8,0x637b,0x457b,0x39af,0xbccd,0xed01,0xc086,0xedf9,0x3cf1,0xb791,0x969f,0x9513,0x3d06,0xea62,0xae46,0xcd11,0xbd27,0xb518,0xb74a,0x650f,0xbd46,0xa216,0x216e,0x0713,0x3d57,0x8db0,0x463a,0x9f2e,0x3d87,0xfa6a,0x0a69,0x0dd5,0x3d7d,0x5c47,0xd2cd,0x9397,0xbdc3,0x33a7,0x1fe6,0xb5d8,0xbde5,0xcb8f,0x9e19,0xa2da,0xbde8,0xa42f,0xaf5a,0xe7b9,0x3e1e,0x48f2,0xb2c4,0xd544,0x3e52,0x26d1,0x3b1d,0x8488,0x3e80,0xd46d,0xaf17,0x084c,0x3eb3,0x8009,0xc871,0x3efc,0x3ef0,0xe2d6,0x7f39,0xb36e,0x3f36,0xecd8,0x1f7d,0x73d7,0x3f8a,0x4ff3,0x66d5,0xb790,0x3ff0,0x9625,0xe325,0x9d96};#endif#ifdef UNK/* x exp(-x) chin(x), inverted interval 8 to 18 */static double C1[] = {-8.12435385225864036372E-18, 2.17586413290339214377E-17, 5.22624394924072204667E-17,-9.48812110591690559363E-16, 5.35546311647465209166E-15,-1.21009970113732918701E-14,-6.00865178553447437951E-14, 7.16339649156028587775E-13,-2.93496072607599856104E-12,-1.40359438136491256904E-12, 8.76302288609054966081E-11,-4.40092476213282340617E-10,-1.87992075640569295479E-10, 1.31458150989474594064E-8,-4.75513930924765465590E-8,-2.21775018801848880741E-7, 1.94635531373272490962E-6, 4.33505889257316408893E-6,-6.13387001076494349496E-5,-3.13085477492997465138E-4, 4.97164789823116062801E-4, 2.64347496031374526641E-2, 1.11446150876699213025E0};/* x exp(-x) chin(x), inverted interval 18 to 88 */static double C2[] = { 8.06913408255155572081E-18,-2.08074168180148170312E-17,-5.98111329658272336816E-17, 2.68533951085945765591E-16, 4.52313941698904694774E-16,-3.10734917335299464535E-15,-4.42823207332531972288E-15, 3.49639695410806959872E-14, 6.63406731718911586609E-14,-3.71902448093119218395E-13,-1.27135418132338309016E-12, 2.74851141935315395333E-12, 2.33781843985453438400E-11, 2.71436006377612442764E-11,-2.56600180000355990529E-10,-1.61021375163803438552E-9,-4.72543064876271773512E-9,-3.00095178028681682282E-9, 7.79387474390914922337E-8, 1.06942765566401507066E-6, 1.59503164802313196374E-5, 3.49592575153777996871E-4, 1.28475387530065247392E-2, 1.03665693917934275131E0};#endif#ifdef DECstatic unsigned short C1[] = {0122025,0157055,0021702,0021427,0022310,0130043,0123265,0022340,0022561,0002231,0017746,0013043,0123610,0136375,0002352,0024467,0024300,0171555,0141300,0000446,0124531,0176777,0126210,0035616,0125207,0046604,0167760,0077132,0026111,0120666,0026606,0064143,0126516,0103615,0054127,0005436,0126305,0104721,0025415,0004134,0027700,0131556,0164725,0157553,0130361,0170602,0077274,0055406,0130116,0131420,0125472,0017231,0031541,0153747,0177312,0056304,0132114,0035517,0041545,0043151,0132556,0020415,0110044,0172442,0033402,0117041,0031152,0010364,0033621,0072737,0050647,0013720,0134600,0121366,0140010,0063265,0135244,0022637,0013756,0044742,0035402,0052052,0006523,0043564,0036730,0106660,0020277,0162146,0040216,0123254,0135147,0005724};static unsigned short C2[] = {0022024,0154550,0104311,0144257,0122277,0165037,0133443,0155601,0122611,0165102,0157053,0055252,0023232,0146235,0153511,0113222,0023402,0057340,0145304,0010471,0124137,0164171,0113071,0100002,0124237,0105473,0056130,0022022,0025035,0073266,0056746,0164433,0025225,0061313,0055600,0165407,0125721,0056312,0107613,0051215,0126262,0166534,0115336,0066653,0026501,0064307,0127442,0065573,0027315,0121375,0142020,0045356,0027356,0140764,0070641,0046570,0130215,0010503,0146335,0177737,0130735,0047134,0015215,0163665,0131242,0056523,0155276,0050053,0131116,0034515,0050707,0163512,0032247,0057507,0107545,0032007,0033217,0104501,0021706,0025047,0034205,0146413,0033746,0076562,0035267,0044605,0065355,0002772,0036522,0077173,0130716,0170304,0040204,0130454,0130571,0027270};#endif#ifdef IBMPCstatic unsigned short C1[] = {0x4463,0xa478,0xbbc5,0xbc62,0xa49c,0x74d6,0x1604,0x3c79,0xc2c4,0x23fc,0x2093,0x3c8e,0x4527,0xa09d,0x179f,0xbcd1,0x0025,0xb858,0x1e6d,0x3cf8,0x0772,0xf591,0x3fbf,0xbd0b,0x0fcb,0x9dfe,0xe9b0,0xbd30,0xcd0c,0xc5b0,0x3436,0x3d69,0xe164,0xab0a,0xd0f1,0xbd89,0xa10c,0x2561,0xb13a,0xbd78,0xbbed,0xdd3a,0x166d,0x3dd8,0x8b61,0x4fd7,0x3e30,0xbdfe,0x43d3,0x1567,0xd662,0xbde9,0x4b98,0xffd9,0x3afc,0x3e4c,0xa8cd,0xe86c,0x8769,0xbe69,0x9ea4,0xb204,0xc421,0xbe8d,0x421f,0x264d,0x53c4,0x3ec0,0xe2fa,0xea34,0x2ebb,0x3ed2,0x0cd7,0xd801,0x145e,0xbf10,0xc93c,0xe2fd,0x84b3,0xbf34,0x68ef,0x41aa,0x4a85,0x3f40,0xfc8d,0x0417,0x11b6,0x3f9b,0xe17b,0x974c,0xd4d5,0x3ff1};static unsigned short C2[] = {0x3916,0x1119,0x9b2d,0x3c62,0x7b70,0xf6e4,0xfd43,0xbc77,0x6b55,0x5bc5,0x3d48,0xbc91,0x32d2,0xbae9,0x5993,0x3cb3,0x8227,0x1958,0x4bdc,0x3cc0,0x3000,0x32c7,0xfd0f,0xbceb,0x0482,0x6b8b,0xf167,0xbcf3,0xdd23,0xcbbc,0xaed6,0x3d23,0x1d61,0x6b70,0xac59,0x3d32,0x6a52,0x51f1,0x2b99,0xbd5a,0xcdb5,0x935b,0x5dab,0xbd76,0x4d6f,0xf5e4,0x2d18,0x3d88,0x095e,0xb882,0xb45f,0x3db9,0x29af,0x8e34,0xd83e,0x3dbd,0xbffc,0x799b,0xa228,0xbdf1,0xbcf7,0x8351,0xa9cb,0xbe1b,0xca05,0x7b57,0x4baa,0xbe34,0xfce9,0xaa38,0xc729,0xbe29,0xa681,0xf1ec,0xebe8,0x3e74,0xc545,0x2478,0xf128,0x3eb1,0xcfae,0x66fc,0xb9a1,0x3ef0,0xa0bf,0xad5d,0xe930,0x3f36,0xde19,0x7639,0x4fcf,0x3f8a,0x25d7,0x962f,0x9625,0x3ff0};#endif#ifdef MIEEEstatic unsigned short C1[] = {0xbc62,0xbbc5,0xa478,0x4463,0x3c79,0x1604,0x74d6,0xa49c,0x3c8e,0x2093,0x23fc,0xc2c4,0xbcd1,0x179f,0xa09d,0x4527,0x3cf8,0x1e6d,0xb858,0x0025,0xbd0b,0x3fbf,0xf591,0x0772,0xbd30,0xe9b0,0x9dfe,0x0fcb,0x3d69,0x3436,0xc5b0,0xcd0c,0xbd89,0xd0f1,0xab0a,0xe164,0xbd78,0xb13a,0x2561,0xa10c,0x3dd8,0x166d,0xdd3a,0xbbed,0xbdfe,0x3e30,0x4fd7,0x8b61,0xbde9,0xd662,0x1567,0x43d3,0x3e4c,0x3afc,0xffd9,0x4b98,0xbe69,0x8769,0xe86c,0xa8cd,0xbe8d,0xc421,0xb204,0x9ea4,0x3ec0,0x53c4,0x264d,0x421f,0x3ed2,0x2ebb,0xea34,0xe2fa,0xbf10,0x145e,0xd801,0x0cd7,0xbf34,0x84b3,0xe2fd,0xc93c,0x3f40,0x4a85,0x41aa,0x68ef,0x3f9b,0x11b6,0x0417,0xfc8d,0x3ff1,0xd4d5,0x974c,0xe17b};static unsigned short C2[] = {0x3c62,0x9b2d,0x1119,0x3916,0xbc77,0xfd43,0xf6e4,0x7b70,0xbc91,0x3d48,0x5bc5,0x6b55,0x3cb3,0x5993,0xbae9,0x32d2,0x3cc0,0x4bdc,0x1958,0x8227,0xbceb,0xfd0f,0x32c7,0x3000,0xbcf3,0xf167,0x6b8b,0x0482,0x3d23,0xaed6,0xcbbc,0xdd23,0x3d32,0xac59,0x6b70,0x1d61,0xbd5a,0x2b99,0x51f1,0x6a52,0xbd76,0x5dab,0x935b,0xcdb5,0x3d88,0x2d18,0xf5e4,0x4d6f,0x3db9,0xb45f,0xb882,0x095e,0x3dbd,0xd83e,0x8e34,0x29af,0xbdf1,0xa228,0x799b,0xbffc,0xbe1b,0xa9cb,0x8351,0xbcf7,0xbe34,0x4baa,0x7b57,0xca05,0xbe29,0xc729,0xaa38,0xfce9,0x3e74,0xebe8,0xf1ec,0xa681,0x3eb1,0xf128,0x2478,0xc545,0x3ef0,0xb9a1,0x66fc,0xcfae,0x3f36,0xe930,0xad5d,0xa0bf,0x3f8a,0x4fcf,0x7639,0xde19,0x3ff0,0x9625,0x962f,0x25d7};#endif/* Sine and cosine integrals */#ifdef ANSIPROTextern double log ( double );extern double exp ( double );extern double fabs ( double );extern double chbevl ( double, void *, int );#elsedouble log(), exp(), fabs(), chbevl();#endif#define EUL 0.57721566490153286061extern double MACHEP, MAXNUM, PIO2;int shichi( x, si, ci )double x;double *si, *ci;{double k, z, c, s, a;short sign;if( x < 0.0 )	{	sign = -1;	x = -x;	}else	sign = 0;if( x == 0.0 )	{	*si = 0.0;	*ci = -MAXNUM;	return( 0 );	}if( x >= 8.0 )	goto chb;z = x * x;/*	Direct power series expansion	*/a = 1.0;s = 1.0;c = 0.0;k = 2.0;do	{	a *= z/k;	c += a/k;	k += 1.0;	a /= k;	s += a/k;	k += 1.0;	}while( fabs(a/s) > MACHEP );s *= x;goto done;chb:if( x < 18.0 )	{	a = (576.0/x - 52.0)/10.0;	k = exp(x) / x;	s = k * chbevl( a, S1, 22 );	c = k * chbevl( a, C1, 23 );	goto done;	}if( x <= 88.0 )	{	a = (6336.0/x - 212.0)/70.0;	k = exp(x) / x;	s = k * chbevl( a, S2, 23 );	c = k * chbevl( a, C2, 24 );	goto done;	}else	{	if( sign )		*si = -MAXNUM;	else		*si = MAXNUM;	*ci = MAXNUM;	return(0);	}done:if( sign )	s = -s;*si = s;*ci = EUL + log(x) + c;return(0);}
 |