| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 | /*							stdtr.c * *	Student's t distribution * * * * SYNOPSIS: * * double t, stdtr(); * short k; * * y = stdtr( k, t ); * * * DESCRIPTION: * * Computes the integral from minus infinity to t of the Student * t distribution with integer k > 0 degrees of freedom: * *                                      t *                                      - *                                     | | *              -                      |         2   -(k+1)/2 *             | ( (k+1)/2 )           |  (     x   ) *       ----------------------        |  ( 1 + --- )        dx *                     -               |  (      k  ) *       sqrt( k pi ) | ( k/2 )        | *                                   | | *                                    - *                                   -inf. *  * Relation to incomplete beta integral: * *        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) * where *        z = k/(k + t**2). * * For t < -2, this is the method of computation.  For higher t, * a direct method is derived from integration by parts. * Since the function is symmetric about t=0, the area under the * right tail of the density is found by calling the function * with -t instead of t. *  * ACCURACY: * * Tested at random 1 <= k <= 25.  The "domain" refers to t. *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE     -100,-2      50000       5.9e-15     1.4e-15 *    IEEE     -2,100      500000       2.7e-15     4.9e-17 *//*							stdtri.c * *	Functional inverse of Student's t distribution * * * * SYNOPSIS: * * double p, t, stdtri(); * int k; * * t = stdtri( k, p ); * * * DESCRIPTION: * * Given probability p, finds the argument t such that stdtr(k,t) * is equal to p. *  * ACCURACY: * * Tested at random 1 <= k <= 100.  The "domain" refers to p: *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE    .001,.999     25000       5.7e-15     8.0e-16 *    IEEE    10^-6,.001    25000       2.0e-12     2.9e-14 *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier*/#include <math.h>extern double PI, MACHEP, MAXNUM;#ifdef ANSIPROTextern double sqrt ( double );extern double atan ( double );extern double incbet ( double, double, double );extern double incbi ( double, double, double );extern double fabs ( double );#elsedouble sqrt(), atan(), incbet(), incbi(), fabs();#endifdouble stdtr( k, t )int k;double t;{double x, rk, z, f, tz, p, xsqk;int j;if( k <= 0 )	{	mtherr( "stdtr", DOMAIN );	return(0.0);	}if( t == 0 )	return( 0.5 );if( t < -2.0 )	{	rk = k;	z = rk / (rk + t * t);	p = 0.5 * incbet( 0.5*rk, 0.5, z );	return( p );	}/*	compute integral from -t to + t */if( t < 0 )	x = -t;else	x = t;rk = k;	/* degrees of freedom */z = 1.0 + ( x * x )/rk;/* test if k is odd or even */if( (k & 1) != 0)	{	/*	computation for odd k	*/	xsqk = x/sqrt(rk);	p = atan( xsqk );	if( k > 1 )		{		f = 1.0;		tz = 1.0;		j = 3;		while(  (j<=(k-2)) && ( (tz/f) > MACHEP )  )			{			tz *= (j-1)/( z * j );			f += tz;			j += 2;			}		p += f * xsqk/z;		}	p *= 2.0/PI;	}else	{	/*	computation for even k	*/	f = 1.0;	tz = 1.0;	j = 2;	while(  ( j <= (k-2) ) && ( (tz/f) > MACHEP )  )		{		tz *= (j - 1)/( z * j );		f += tz;		j += 2;		}	p = f * x/sqrt(z*rk);	}/*	common exit	*/if( t < 0 )	p = -p;	/* note destruction of relative accuracy */	p = 0.5 + 0.5 * p;return(p);}double stdtri( k, p )int k;double p;{double t, rk, z;int rflg;if( k <= 0 || p <= 0.0 || p >= 1.0 )	{	mtherr( "stdtri", DOMAIN );	return(0.0);	}rk = k;if( p > 0.25 && p < 0.75 )	{	if( p == 0.5 )		return( 0.0 );	z = 1.0 - 2.0 * p;	z = incbi( 0.5, 0.5*rk, fabs(z) );	t = sqrt( rk*z/(1.0-z) );	if( p < 0.5 )		t = -t;	return( t );	}rflg = -1;if( p >= 0.5)	{	p = 1.0 - p;	rflg = 1;	}z = incbi( 0.5*rk, 0.5, 2.0*p );if( MAXNUM * z < rk )	return(rflg* MAXNUM);t = sqrt( rk/z - rk );return( rflg * t );}
 |