| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 | /*							struve.c * *      Struve function * * * * SYNOPSIS: * * double v, x, y, struve(); * * y = struve( v, x ); * * * * DESCRIPTION: * * Computes the Struve function Hv(x) of order v, argument x. * Negative x is rejected unless v is an integer. * * This module also contains the hypergeometric functions 1F2 * and 3F0 and a routine for the Bessel function Yv(x) with * noninteger v. * * * * ACCURACY: * * Not accurately characterized, but spot checked against tables. * *//*Cephes Math Library Release 2.81:  June, 2000Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier*/#include <math.h>#define DEBUG 0#ifdef ANSIPROTextern double gamma ( double );extern double pow ( double, double );extern double sqrt ( double );extern double yn ( int, double );extern double jv ( double, double );extern double fabs ( double );extern double floor ( double );extern double sin ( double );extern double cos ( double );double yv ( double, double );double onef2 (double, double, double, double, double * );double threef0 (double, double, double, double, double * );#elsedouble gamma(), pow(), sqrt(), yn(), yv(), jv(), fabs(), floor();double sin(), cos();double onef2(), threef0();#endifstatic double stop = 1.37e-17;extern double MACHEP;double onef2( a, b, c, x, err )double a, b, c, x;double *err;{double n, a0, sum, t;double an, bn, cn, max, z;an = a;bn = b;cn = c;a0 = 1.0;sum = 1.0;n = 1.0;t = 1.0;max = 0.0;do	{	if( an == 0 )		goto done;	if( bn == 0 )		goto error;	if( cn == 0 )		goto error;	if( (a0 > 1.0e34) || (n > 200) )		goto error;	a0 *= (an * x) / (bn * cn * n);	sum += a0;	an += 1.0;	bn += 1.0;	cn += 1.0;	n += 1.0;	z = fabs( a0 );	if( z > max )		max = z;	if( sum != 0 )		t = fabs( a0 / sum );	else		t = z;	}while( t > stop );done:*err = fabs( MACHEP*max /sum );#if DEBUG	printf(" onef2 cancellation error %.5E\n", *err );#endifgoto xit;error:#if DEBUGprintf("onef2 does not converge\n");#endif*err = 1.0e38;xit:#if DEBUGprintf("onef2( %.2E %.2E %.2E %.5E ) =  %.3E  %.6E\n", a, b, c, x, n, sum);#endifreturn(sum);}double threef0( a, b, c, x, err )double a, b, c, x;double *err;{double n, a0, sum, t, conv, conv1;double an, bn, cn, max, z;an = a;bn = b;cn = c;a0 = 1.0;sum = 1.0;n = 1.0;t = 1.0;max = 0.0;conv = 1.0e38;conv1 = conv;do	{	if( an == 0.0 )		goto done;	if( bn == 0.0 )		goto done;	if( cn == 0.0 )		goto done;	if( (a0 > 1.0e34) || (n > 200) )		goto error;	a0 *= (an * bn * cn * x) / n;	an += 1.0;	bn += 1.0;	cn += 1.0;	n += 1.0;	z = fabs( a0 );	if( z > max )		max = z;	if( z >= conv )		{		if( (z < max) && (z > conv1) )			goto done;		}	conv1 = conv;	conv = z;	sum += a0;	if( sum != 0 )		t = fabs( a0 / sum );	else		t = z;	}while( t > stop );done:t = fabs( MACHEP*max/sum );#if DEBUG	printf(" threef0 cancellation error %.5E\n", t );#endifmax = fabs( conv/sum );if( max > t )	t = max;#if DEBUG	printf(" threef0 convergence %.5E\n", max );#endifgoto xit;error:#if DEBUGprintf("threef0 does not converge\n");#endift = 1.0e38;xit:#if DEBUGprintf("threef0( %.2E %.2E %.2E %.5E ) =  %.3E  %.6E\n", a, b, c, x, n, sum);#endif*err = t;return(sum);}extern double PI;double struve( v, x )double v, x;{double y, ya, f, g, h, t;double onef2err, threef0err;f = floor(v);if( (v < 0) && ( v-f == 0.5 ) )	{	y = jv( -v, x );	f = 1.0 - f;	g =  2.0 * floor(f/2.0);	if( g != f )		y = -y;	return(y);	}t = 0.25*x*x;f = fabs(x);g = 1.5 * fabs(v);if( (f > 30.0) && (f > g) )	{	onef2err = 1.0e38;	y = 0.0;	}else	{	y = onef2( 1.0, 1.5, 1.5+v, -t, &onef2err );	}if( (f < 18.0) || (x < 0.0) )	{	threef0err = 1.0e38;	ya = 0.0;	}else	{	ya = threef0( 1.0, 0.5, 0.5-v, -1.0/t, &threef0err );	}f = sqrt( PI );h = pow( 0.5*x, v-1.0 );if( onef2err <= threef0err )	{	g = gamma( v + 1.5 );	y = y * h * t / ( 0.5 * f * g );	return(y);	}else	{	g = gamma( v + 0.5 );	ya = ya * h / ( f * g );	ya = ya + yv( v, x );	return(ya);	}}/* Bessel function of noninteger order */double yv( v, x )double v, x;{double y, t;int n;y = floor( v );if( y == v )	{	n = v;	y = yn( n, x );	return( y );	}t = PI * v;y = (cos(t) * jv( v, x ) - jv( -v, x ))/sin(t);return( y );}/* Crossover points between ascending series and asymptotic series * for Struve function * *	 v	 x *  *	 0	19.2 *	 1	18.95 *	 2	19.15 *	 3	19.3 *	 5	19.7 *	10	21.35 *	20	26.35 *	30	32.31 *	40	40.0 */
 |