123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- /* j0f.c
- *
- * Bessel function of order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, j0f();
- *
- * y = j0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order zero of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval the following polynomial
- * approximation is used:
- *
- *
- * 2 2 2
- * (w - r ) (w - r ) (w - r ) P(w)
- * 1 2 3
- *
- * 2
- * where w = x and the three r's are zeros of the function.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
- *
- * j0(x) = Modulus(x) cos( Phase(x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
- *
- */
- /* y0f.c
- *
- * Bessel function of the second kind, order zero
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, y0f();
- *
- * y = y0f( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of the second kind, of order
- * zero, of the argument.
- *
- * The domain is divided into the intervals [0, 2] and
- * (2, infinity). In the first interval a rational approximation
- * R(x) is employed to compute
- *
- * 2 2 2
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
- * 1 2 3
- *
- * Thus a call to j0() is required. The three zeros are removed
- * from R(x) to improve its numerical stability.
- *
- * In the second interval, the modulus and phase are approximated
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
- *
- * y0(x) = Modulus(x) sin( Phase(x) ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Absolute error, when y0(x) < 1; else relative error:
- *
- * arithmetic domain # trials peak rms
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- static float MO[8] = {
- -6.838999669318810E-002f,
- 1.864949361379502E-001f,
- -2.145007480346739E-001f,
- 1.197549369473540E-001f,
- -3.560281861530129E-003f,
- -4.969382655296620E-002f,
- -3.355424622293709E-006f,
- 7.978845717621440E-001f
- };
- static float PH[8] = {
- 3.242077816988247E+001f,
- -3.630592630518434E+001f,
- 1.756221482109099E+001f,
- -4.974978466280903E+000f,
- 1.001973420681837E+000f,
- -1.939906941791308E-001f,
- 6.490598792654666E-002f,
- -1.249992184872738E-001f
- };
- static float YP[5] = {
- 9.454583683980369E-008f,
- -9.413212653797057E-006f,
- 5.344486707214273E-004f,
- -1.584289289821316E-002f,
- 1.707584643733568E-001f
- };
- float YZ1 = 0.43221455686510834878f;
- float YZ2 = 22.401876406482861405f;
- float YZ3 = 64.130620282338755553f;
- static float DR1 = 5.78318596294678452118f;
- /*
- static float DR2 = 30.4712623436620863991;
- static float DR3 = 74.887006790695183444889;
- */
- static float JP[5] = {
- -6.068350350393235E-008f,
- 6.388945720783375E-006f,
- -3.969646342510940E-004f,
- 1.332913422519003E-002f,
- -1.729150680240724E-001f
- };
- extern float PIO4F;
- float polevlf(float, float *, int);
- float logf(float), sinf(float), cosf(float), sqrtf(float);
- float j0f( float xx )
- {
- float x, w, z, p, q, xn;
- if( xx < 0 )
- x = -xx;
- else
- x = xx;
- if( x <= 2.0f )
- {
- z = x * x;
- if( x < 1.0e-3f )
- return( 1.0f - 0.25f*z );
- p = (z-DR1) * polevlf( z, JP, 4);
- return( p );
- }
- q = 1.0f/x;
- w = sqrtf(q);
- p = w * polevlf( q, MO, 7);
- w = q*q;
- xn = q * polevlf( w, PH, 7) - PIO4F;
- p = p * cosf(xn + x);
- return(p);
- }
- /* y0() 2 */
- /* Bessel function of second kind, order zero */
- /* Rational approximation coefficients YP[] are used for x < 6.5.
- * The function computed is y0(x) - 2 ln(x) j0(x) / pi,
- * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / pi
- * = 0.073804295108687225 , EUL is Euler's constant.
- */
- static float TWOOPI = 0.636619772367581343075535f; /* 2/pi */
- extern float MAXNUMF;
- float y0f( float xx )
- {
- float x, w, z, p, q, xn;
- x = xx;
- if( x <= 2.0f )
- {
- if( x <= 0.0f )
- {
- mtherr( "y0f", DOMAIN );
- return( -MAXNUMF );
- }
- z = x * x;
- /* w = (z-YZ1)*(z-YZ2)*(z-YZ3) * polevlf( z, YP, 4);*/
- w = (z-YZ1) * polevlf( z, YP, 4);
- w += TWOOPI * logf(x) * j0f(x);
- return( w );
- }
- q = 1.0f/x;
- w = sqrtf(q);
- p = w * polevlf( q, MO, 7);
- w = q*q;
- xn = q * polevlf( w, PH, 7) - PIO4F;
- p = p * sinf(xn + x);
- return( p );
- }
|