123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- /* elliel.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * long double phi, m, y, elliel();
- *
- * y = elliel( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi_\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [-10, 10] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,10 50000 2.7e-18 2.3e-19
- *
- *
- */
- /*
- Cephes Math Library Release 2.3: November, 1995
- Copyright 1984, 1987, 1993, 1995 by Stephen L. Moshier
- */
- /* Incomplete elliptic integral of second kind */
- #include <math.h>
- #ifdef ANSIPROT
- extern long double sqrtl ( long double );
- extern long double fabsl ( long double );
- extern long double logl ( long double );
- extern long double sinl ( long double );
- extern long double tanl ( long double );
- extern long double atanl ( long double );
- extern long double floorl ( long double );
- extern long double ellpel ( long double );
- extern long double ellpkl ( long double );
- long double elliel ( long double, long double );
- #else
- long double sqrtl(), fabsl(), logl(), sinl(), tanl(), atanl(), floorl();
- long double ellpel(), ellpkl(), elliel();
- #endif
- extern long double PIL, PIO2L, MACHEPL;
- long double elliel( phi, m )
- long double phi, m;
- {
- long double a, b, c, e, temp, lphi, t, E;
- int d, mod, npio2, sign;
- if( m == 0.0L )
- return( phi );
- lphi = phi;
- npio2 = floorl( lphi/PIO2L );
- if( npio2 & 1 )
- npio2 += 1;
- lphi = lphi - npio2 * PIO2L;
- if( lphi < 0.0L )
- {
- lphi = -lphi;
- sign = -1;
- }
- else
- {
- sign = 1;
- }
- a = 1.0L - m;
- E = ellpel( a );
- if( a == 0.0L )
- {
- temp = sinl( lphi );
- goto done;
- }
- t = tanl( lphi );
- b = sqrtl(a);
- if( fabsl(t) > 10.0L )
- {
- /* Transform the amplitude */
- e = 1.0L/(b*t);
- /* ... but avoid multiple recursions. */
- if( fabsl(e) < 10.0L )
- {
- e = atanl(e);
- temp = E + m * sinl( lphi ) * sinl( e ) - elliel( e, m );
- goto done;
- }
- }
- c = sqrtl(m);
- a = 1.0L;
- d = 1;
- e = 0.0L;
- mod = 0;
- while( fabsl(c/a) > MACHEPL )
- {
- temp = b/a;
- lphi = lphi + atanl(t*temp) + mod * PIL;
- mod = (lphi + PIO2L)/PIL;
- t = t * ( 1.0L + temp )/( 1.0L - temp * t * t );
- c = 0.5L*( a - b );
- temp = sqrtl( a * b );
- a = 0.5L*( a + b );
- b = temp;
- d += d;
- e += c * sinl(lphi);
- }
- temp = E / ellpkl( 1.0L - m );
- temp *= (atanl(t) + mod * PIL)/(d * a);
- temp += e;
- done:
- if( sign < 0 )
- temp = -temp;
- temp += npio2 * E;
- return( temp );
- }
|