| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 | /* vi: set sw=4 ts=4: *//* * Copyright (C) 2001 by Rene Müller *      DES based crypt() implementation, originally written for dietlibc by  *      Rene Müller, based on Bruce Schneier's Applied Cryptography, but  *      tightened up quite a bit. * * Copyright (C) 2001 by Erik Andersen  *      Adjusted each function to be reentrant, hacked in md5 support. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */#include <crypt.h>#include <string.h>#include <unistd.h>extern char *md5_magic;extern char * md5_crypt_r( const char *pw, const char *salt, struct crypt_data * data);/* Initial permutation, */static const char IP[] = {  57,49,41,33,25,17, 9, 1,  59,51,43,35,27,19,11, 3,  61,53,45,37,29,21,13, 5,  63,55,47,39,31,23,15, 7,  56,48,40,32,24,16, 8, 0,  58,50,42,34,26,18,10, 2,  60,52,44,36,28,20,12, 4,  62,54,46,38,30,22,14, 6};/* Final permutation, FP = IP^(-1) */static const char FP[] = {  39, 7,47,15,55,23,63,31,  38, 6,46,14,54,22,62,30,  37, 5,45,13,53,21,61,29,  36, 4,44,12,52,20,60,28,  35, 3,43,11,51,19,59,27,  34, 2,42,10,50,18,58,26,  33, 1,41, 9,49,17,57,25,  32, 0,40, 8,48,16,56,24};/* Permuted-choice 1 from the key bits to yield C and D. * Note that bits 8,16... are left out: They are intended for a parity check. */static const char PC1_C[] = {  56,48,40,32,24,16, 8,   0,57,49,41,33,25,17,   9, 1,58,50,42,34,26,  18,10, 2,59,51,43,35};static const char PC1_D[] = {  62,54,46,38,30,22,14,   6,61,53,45,37,29,21,  13, 5,60,52,44,36,28,  20,12, 4,27,19,11, 3};/* Sequence of shifts used for the key schedule. */static const char shifts[] = { 1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1 };/* * Permuted-choice 2, to pick out the bits from the CD array that generate * the key schedule. */static const char PC2_C[] = {  13, 16, 10, 23,  0,  4,  2, 27, 14,  5, 20,  9,  22, 18, 11,  3, 25,  7, 15,  6, 26, 19, 12,  1};static const char PC2_D[] = {  12, 23,  2,  8, 18, 26,  1, 11, 22, 16,  4, 19,  15, 20, 10, 27,  5, 24, 17, 13, 21,  7,  0,  3};static const char e2[] = {  32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,   8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,  16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,  24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1};/* The 8 selection functions. For some reason, they give a 0-origin index, * unlike everything else. */static const char S[8][64] = {  {    14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,     0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,     4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,    15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13  },  {    15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,     3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,     0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,    13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9  },  {    10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,    13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,    13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,     1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12  },  {     7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,    13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,    10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,     3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14  },  {     2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,    14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,     4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,    11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3  },  {    12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,    10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,     9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,     4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13  },  {     4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,    13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,     1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2,     6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12  },  {    13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,     1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,     7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,     2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11  }};/* P is a permutation on the selected combination of the current L and key. */static const char P[] = {  15, 6,19,20, 28,11,27,16,  0,14,22,25,  4,17,30, 9,   1, 7,23,13, 31,26, 2, 8, 18,12,29, 5, 21,10, 3,24};/* Set up the key schedule from the key. */void setkey_r(const char *key, struct crypt_data *data){  register int i, j, k;  int  t;  int  s;  /* First, generate C and D by permuting the key.  The low order bit of each   * 8-bit char is not used, so C and D are only 28 bits apiece.   */  for(i=0; i < 28; i++) {    data->C[i] = key[(int)PC1_C[i]];    data->D[i] = key[(int)PC1_D[i]];  }  /* To generate Ki, rotate C and D according to schedule and pick up a   * permutation using PC2.   */  for(i=0; i < 16; i++) {    /* rotate. */    s = shifts[i];    for(k=0; k < s; k++) {      t = data->C[0];      for(j=0; j < 27; j++)	data->C[j] = data->C[j+1];      data->C[27] = t;      t = data->D[0];      for(j=0; j < 27; j++)	data->D[j] = data->D[j+1];      data->D[27] = t;    }    /* get Ki. Note C and D are concatenated. */    for(j=0; j < 24; j++) {      data->KS[i][j] = data->C[(int)PC2_C[j]];      data->KS[i][j+24] = data->D[(int)PC2_D[j]];    }  }  for(i=0; i < 48; i++)    data->E[i] = e2[i];}/* The payoff: encrypt a block. */void encrypt_r(char block[64], int edflag, struct crypt_data *data){  int  i, ii;  register int t, j, k;  /* First, permute the bits in the input */  for(j=0; j < 64; j++)    data->L[j] = data->block[(int)IP[j]];  /* Perform an encryption operation 16 times. */  for(ii=0; ii < 16; ii++) {    i = ii;    /* Save the R array, which will be the new L. */    for(j=0; j < 32; j++)      data->tempL[j] = data->R[j];    /* Expand R to 48 bits using the E selector;     * exclusive-or with the current key bits.     */    for(j=0; j < 48; j++)      data->preS[j] = data->R[data->E[j]-1] ^ data->KS[i][j];    /* The pre-select bits are now considered in 8 groups of 6 bits each.     * The 8 selection functions map these 6-bit quantities into 4-bit     * quantities and the results permuted to make an f(R, K).     * The indexing into the selection functions is peculiar;     * it could be simplified by rewriting the tables.     */    for(j=0; j < 8; j++) {      t = ((j<<1)+j)<<1;      k = S[j][(data->preS[t]<<5)+	 (data->preS[t+1]<<3)+	 (data->preS[t+2]<<2)+	 (data->preS[t+3]<<1)+	 (data->preS[t+4]   )+	 (data->preS[t+5]<<4)];      t = j << 2;      data->f[t  ] = (k>>3)&01;      data->f[t+1] = (k>>2)&01;      data->f[t+2] = (k>>1)&01;      data->f[t+3] = (k   )&01;    }    /* The new R is L ^ f(R, K). The f here has to be permuted first, though. */    for(j=0; j < 32; j++)      data->R[j] = data->L[j] ^ data->f[(int)P[j]];    /* Finally, the new L (the original R) is copied back. */    for(j=0; j < 32; j++)      data->L[j] = data->tempL[j];  }  /* The output L and R are reversed. */  for(j=0; j < 32; j++) {    data->L[j] ^= data->R[j];    data->R[j] ^= data->L[j];    data->L[j] ^= data->R[j];  }  /* The final output gets the inverse permutation of the very original. */  for(j=0; j < 64; j++)    data->block[j] = data->L[(int)FP[j]];}char * crypt_r(const char *pw, const char *salt, struct crypt_data *data){  register int i, j, c;      /* Check if we are supposed to be using the MD5 encryption replacement.  */  if (strncmp (md5_magic, salt, sizeof (md5_magic) - 1) == 0)    return md5_crypt_r(pw, salt, data);  for(i=0; i < 66; i++)    data->block[i] = 0;  for(i=0; (c= *pw) && i < 64; pw++) {    for(j=0; j < 7; j++, i++)      data->block[i] = (c>>(6-j)) & 01;    i++;  }  setkey_r(data->block, data);  for(i=0; i < 66; i++)    data->block[i] = 0;  for(i=0; i < 2; i++) {    c = *salt++;    data->iobuf[i] = c;    if(c > 'Z')      c -= 6;    if(c > '9')      c -= 7;    c -= '.';    for(j=0; j < 6; j++) {      if((c>>j) & 01) {	int ind1 = (((i<<1)+i)<< 1) + j;	int ind2 = ind1 + 24;	data->E[ind1] ^= data->E[ind2];	data->E[ind2] ^= data->E[ind1];	data->E[ind1] ^= data->E[ind2];      }    }  }  for(i=0; i < 25; i++)    encrypt_r(data->block, 0, data);  for(i=0; i < 11; i++) {    c = 0;    for(j=0; j < 6; j++) {      c <<= 1;      c |= data->block[(((i<<1)+i)<<1)+j];    }    c += '.';    if(c > '9')      c += 7;    if(c > 'Z')      c += 6;    data->iobuf[i+2] = c;  }  data->iobuf[i+2] = 0;  if(data->iobuf[1] == 0)    data->iobuf[1] = data->iobuf[0];  return(data->iobuf);}
 |