123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- /* log10.c
- *
- * Common logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, log10();
- *
- * y = log10( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns logarithm to the base 10 of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. The logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 30000 1.5e-16 5.0e-17
- * IEEE 0, MAXNUM 30000 1.4e-16 4.8e-17
- * DEC 1, MAXNUM 50000 2.5e-17 6.0e-18
- *
- * In the tests over the interval [1, MAXNUM], the logarithms
- * of the random arguments were uniformly distributed over
- * [0, MAXLOG].
- *
- * ERROR MESSAGES:
- *
- * log10 singularity: x = 0; returns -INFINITY
- * log10 domain: x < 0; returns NAN
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- static char fname[] = {"log10"};
- /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- */
- #ifdef UNK
- static double P[] = {
- 4.58482948458143443514E-5,
- 4.98531067254050724270E-1,
- 6.56312093769992875930E0,
- 2.97877425097986925891E1,
- 6.06127134467767258030E1,
- 5.67349287391754285487E1,
- 1.98892446572874072159E1
- };
- static double Q[] = {
- /* 1.00000000000000000000E0, */
- 1.50314182634250003249E1,
- 8.27410449222435217021E1,
- 2.20664384982121929218E2,
- 3.07254189979530058263E2,
- 2.14955586696422947765E2,
- 5.96677339718622216300E1
- };
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0034500,0046473,0051374,0135174,
- 0037777,0037566,0145712,0150321,
- 0040722,0002426,0031543,0123107,
- 0041356,0046513,0170752,0004346,
- 0041562,0071553,0023536,0163343,
- 0041542,0170221,0024316,0114216,
- 0041237,0016454,0046611,0104602
- };
- static unsigned short Q[] = {
- /*0040200,0000000,0000000,0000000,*/
- 0041160,0100260,0067736,0102424,
- 0041645,0075552,0036563,0147072,
- 0042134,0125025,0021132,0025320,
- 0042231,0120211,0046030,0103271,
- 0042126,0172241,0052151,0120426,
- 0041556,0125702,0072116,0047103
- };
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x974f,0x6a5f,0x09a7,0x3f08,
- 0x5a1a,0xd979,0xe7ee,0x3fdf,
- 0x74c9,0xc66c,0x40a2,0x401a,
- 0x411d,0x7e3d,0xc9a9,0x403d,
- 0xdcdc,0x64eb,0x4e6d,0x404e,
- 0xd312,0x2519,0x5e12,0x404c,
- 0x3130,0x89b1,0xe3a5,0x4033
- };
- static unsigned short Q[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0xd0a2,0x0dfb,0x1016,0x402e,
- 0x79c7,0x47ae,0xaf6d,0x4054,
- 0x455a,0xa44b,0x9542,0x406b,
- 0x10d7,0x2983,0x3411,0x4073,
- 0x3423,0x2a8d,0xde94,0x406a,
- 0xc9c8,0x4e89,0xd578,0x404d
- };
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3f08,0x09a7,0x6a5f,0x974f,
- 0x3fdf,0xe7ee,0xd979,0x5a1a,
- 0x401a,0x40a2,0xc66c,0x74c9,
- 0x403d,0xc9a9,0x7e3d,0x411d,
- 0x404e,0x4e6d,0x64eb,0xdcdc,
- 0x404c,0x5e12,0x2519,0xd312,
- 0x4033,0xe3a5,0x89b1,0x3130
- };
- static unsigned short Q[] = {
- 0x402e,0x1016,0x0dfb,0xd0a2,
- 0x4054,0xaf6d,0x47ae,0x79c7,
- 0x406b,0x9542,0xa44b,0x455a,
- 0x4073,0x3411,0x2983,0x10d7,
- 0x406a,0xde94,0x2a8d,0x3423,
- 0x404d,0xd578,0x4e89,0xc9c8
- };
- #endif
- #define SQRTH 0.70710678118654752440
- #define L102A 3.0078125E-1
- #define L102B 2.48745663981195213739E-4
- #define L10EA 4.3359375E-1
- #define L10EB 7.00731903251827651129E-4
- #ifdef ANSIPROT
- extern double frexp ( double, int * );
- extern double ldexp ( double, int );
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern int isnan ( double );
- extern int isfinite ( double );
- #else
- double frexp(), ldexp(), polevl(), p1evl();
- int isnan(), isfinite();
- #endif
- extern double LOGE2, SQRT2, INFINITY, NAN;
- double log10(x)
- double x;
- {
- VOLATILE double z;
- double y;
- #ifdef DEC
- short *q;
- #endif
- int e;
- #ifdef NANS
- if( isnan(x) )
- return(x);
- #endif
- #ifdef INFINITIES
- if( x == INFINITY )
- return(x);
- #endif
- /* Test for domain */
- if( x <= 0.0 )
- {
- if( x == 0.0 )
- {
- mtherr( fname, SING );
- return( -INFINITY );
- }
- else
- {
- mtherr( fname, DOMAIN );
- return( NAN );
- }
- }
- /* separate mantissa from exponent */
- #ifdef DEC
- q = (short *)&x;
- e = *q; /* short containing exponent */
- e = ((e >> 7) & 0377) - 0200; /* the exponent */
- *q &= 0177; /* strip exponent from x */
- *q |= 040000; /* x now between 0.5 and 1 */
- #endif
- #ifdef IBMPC
- x = frexp( x, &e );
- /*
- q = (short *)&x;
- q += 3;
- e = *q;
- e = ((e >> 4) & 0x0fff) - 0x3fe;
- *q &= 0x0f;
- *q |= 0x3fe0;
- */
- #endif
- /* Equivalent C language standard library function: */
- #ifdef UNK
- x = frexp( x, &e );
- #endif
- #ifdef MIEEE
- x = frexp( x, &e );
- #endif
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
- if( x < SQRTH )
- {
- e -= 1;
- x = ldexp( x, 1 ) - 1.0; /* 2x - 1 */
- }
- else
- {
- x = x - 1.0;
- }
- /* rational form */
- z = x*x;
- y = x * ( z * polevl( x, P, 6 ) / p1evl( x, Q, 6 ) );
- y = y - ldexp( z, -1 ); /* y - 0.5 * x**2 */
- /* multiply log of fraction by log10(e)
- * and base 2 exponent by log10(2)
- */
- z = (x + y) * L10EB; /* accumulate terms in order of size */
- z += y * L10EA;
- z += x * L10EA;
- z += e * L102B;
- z += e * L102A;
- return( z );
- }
|