123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- /* fdtrf.c
- *
- * F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * float x, y, fdtrf();
- *
- * y = fdtrf( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from zero to x under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density). This is the density
- * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
- * variables having Chi square distributions with df1
- * and df2 degrees of freedom, respectively.
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
- *
- *
- * The arguments a and b are greater than zero, and x
- * x is nonnegative.
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 2.2e-5 1.1e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrf domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrcf()
- *
- * Complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int df1, df2;
- * float x, y, fdtrcf();
- *
- * y = fdtrcf( df1, df2, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area from x to infinity under the F density
- * function (also known as Snedcor's density or the
- * variance ratio density).
- *
- *
- * inf.
- * -
- * 1 | | a-1 b-1
- * 1-P(x) = ------ | t (1-t) dt
- * B(a,b) | |
- * -
- * x
- *
- * (See fdtr.c.)
- *
- * The incomplete beta integral is used, according to the
- * formula
- *
- * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 7.3e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrcf domain a<0, b<0, x<0 0.0
- *
- */
- /* fdtrif()
- *
- * Inverse of complemented F distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df1, df2, x, y, fdtrif();
- *
- * x = fdtrif( df1, df2, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the F density argument x such that the integral
- * from x to infinity of the F density is equal to the
- * given probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relations
- *
- * z = incbi( df2/2, df1/2, y )
- * x = df2 (1-z) / (df1 z).
- *
- * Note: the following relations hold for the inverse of
- * the uncomplemented F distribution:
- *
- * z = incbi( df1/2, df2/2, y )
- * x = df2 z / (df1 (1-z)).
- *
- *
- *
- * ACCURACY:
- *
- * arithmetic domain # trials peak rms
- * Absolute error:
- * IEEE 0,100 5000 4.0e-5 3.2e-6
- * Relative error:
- * IEEE 0,100 5000 1.2e-3 1.8e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * fdtrif domain y <= 0 or y > 1 0.0
- * v < 1
- *
- */
- /*
- Cephes Math Library Release 2.2: July, 1992
- Copyright 1984, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- #ifdef ANSIC
- float incbetf(float, float, float);
- float incbif(float, float, float);
- #else
- float incbetf(), incbif();
- #endif
- float fdtrcf( int ia, int ib, float xx )
- {
- float x, a, b, w;
- x = xx;
- if( (ia < 1) || (ib < 1) || (x < 0.0) )
- {
- mtherr( "fdtrcf", DOMAIN );
- return( 0.0 );
- }
- a = ia;
- b = ib;
- w = b / (b + a * x);
- return( incbetf( 0.5*b, 0.5*a, w ) );
- }
- float fdtrf( int ia, int ib, int xx )
- {
- float x, a, b, w;
- x = xx;
- if( (ia < 1) || (ib < 1) || (x < 0.0) )
- {
- mtherr( "fdtrf", DOMAIN );
- return( 0.0 );
- }
- a = ia;
- b = ib;
- w = a * x;
- w = w / (b + w);
- return( incbetf( 0.5*a, 0.5*b, w) );
- }
- float fdtrif( int ia, int ib, float yy )
- {
- float y, a, b, w, x;
- y = yy;
- if( (ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0) )
- {
- mtherr( "fdtrif", DOMAIN );
- return( 0.0 );
- }
- a = ia;
- b = ib;
- w = incbif( 0.5*b, 0.5*a, y );
- x = (b - b*w)/(a*w);
- return(x);
- }
|