| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 | /* @(#)e_acos.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";#endif/* __ieee754_acos(x) * Method : *	acos(x)  = pi/2 - asin(x) *	acos(-x) = pi/2 + asin(x) * For |x|<=0.5 *	acos(x) = pi/2 - (x + x*x^2*R(x^2))	(see asin.c) * For x>0.5 * 	acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) *		= 2asin(sqrt((1-x)/2)) *		= 2s + 2s*z*R(z) 	...z=(1-x)/2, s=sqrt(z) *		= 2f + (2c + 2s*z*R(z)) *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term *     for f so that f+c ~ sqrt(z). * For x<-0.5 *	acos(x) = pi - 2asin(sqrt((1-|x|)/2)) *		= pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: *	if x is NaN, return x itself; *	if |x|>1, return NaN with invalid signal. * * Function needed: __ieee754_sqrt */#include "math.h"#include "math_private.h"#ifdef __STDC__static const double#elsestatic double#endifone=  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */#ifdef __STDC__	double attribute_hidden __ieee754_acos(double x)#else	double attribute_hidden __ieee754_acos(x)	double x;#endif{	double z,p,q,r,w,s,c,df;	int32_t hx,ix;	GET_HIGH_WORD(hx,x);	ix = hx&0x7fffffff;	if(ix>=0x3ff00000) {	/* |x| >= 1 */	    u_int32_t lx;	    GET_LOW_WORD(lx,x);	    if(((ix-0x3ff00000)|lx)==0) {	/* |x|==1 */		if(hx>0) return 0.0;		/* acos(1) = 0  */		else return pi+2.0*pio2_lo;	/* acos(-1)= pi */	    }	    return (x-x)/(x-x);		/* acos(|x|>1) is NaN */	}	if(ix<0x3fe00000) {	/* |x| < 0.5 */	    if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/	    z = x*x;	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));	    r = p/q;	    return pio2_hi - (x - (pio2_lo-x*r));	} else  if (hx<0) {		/* x < -0.5 */	    z = (one+x)*0.5;	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));	    s = __ieee754_sqrt(z);	    r = p/q;	    w = r*s-pio2_lo;	    return pi - 2.0*(s+w);	} else {			/* x > 0.5 */	    z = (one-x)*0.5;	    s = __ieee754_sqrt(z);	    df = s;	    SET_LOW_WORD(df,0);	    c  = (z-df*df)/(s+df);	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));	    r = p/q;	    w = r*s+c;	    return 2.0*(df+w);	}}
 |