| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432 | /* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  *//* *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h> */#ifndef _TGMATH_H#define _TGMATH_H	1/* Include the needed headers.  */#include <math.h>#include <complex.h>/* Since `complex' is currently not really implemented in most C compilers   and if it is implemented, the implementations differ.  This makes it   quite difficult to write a generic implementation of this header.  We   do not try this for now and instead concentrate only on GNU CC.  Once   we have more information support for other compilers might follow.  */#if __GNUC_PREREQ (2, 7)# ifdef __NO_LONG_DOUBLE_MATH#  define __tgml(fct) fct# else#  define __tgml(fct) fct ## l# endif/* This is ugly but unless gcc gets appropriate builtins we have to do   something like this.  Don't ask how it works.  *//* 1 if 'type' is a floating type, 0 if 'type' is an integer type.   Allows for _Bool.  Expands to an integer constant expression.  */# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))/* The tgmath real type for T, where E is 0 if T is an integer type and   1 for a floating type.  */# define __tgmath_real_type_sub(T, E) \  __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \		 : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))/* The tgmath real type of EXPR.  */# define __tgmath_real_type(expr) \  __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))/* We have two kinds of generic macros: to support functions which are   only defined on real valued parameters and those which are defined   for complex functions as well.  */# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \		       if (sizeof (Val) == sizeof (double)		      \			   || __builtin_classify_type (Val) != 8)	      \			 __tgmres = Fct (Val);				      \		       else if (sizeof (Val) == sizeof (float))		      \			 __tgmres = Fct##f (Val);			      \		       else						      \			 __tgmres = __tgml(Fct) (Val);			      \		       __tgmres; }))# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \     (__extension__ ({ __tgmath_real_type (Val1) __tgmres;		      \		       if (sizeof (Val1) == sizeof (double)		      \			   || __builtin_classify_type (Val1) != 8)	      \			 __tgmres = Fct (Val1, Val2);			      \		       else if (sizeof (Val1) == sizeof (float))	      \			 __tgmres = Fct##f (Val1, Val2);		      \		       else						      \			 __tgmres = __tgml(Fct) (Val1, Val2);		      \		       __tgmres; }))# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \		       if ((sizeof (Val1) > sizeof (double)		      \			    || sizeof (Val2) > sizeof (double))		      \			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \			 __tgmres = __tgml(Fct) (Val1, Val2);		      \		       else if (sizeof (Val1) == sizeof (double)	      \				|| sizeof (Val2) == sizeof (double)	      \				|| __builtin_classify_type (Val1) != 8	      \				|| __builtin_classify_type (Val2) != 8)	      \			 __tgmres = Fct (Val1, Val2);			      \		       else						      \			 __tgmres = Fct##f (Val1, Val2);		      \		       __tgmres; }))# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \		       if ((sizeof (Val1) > sizeof (double)		      \			    || sizeof (Val2) > sizeof (double))		      \			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \		       else if (sizeof (Val1) == sizeof (double)	      \				|| sizeof (Val2) == sizeof (double)	      \				|| __builtin_classify_type (Val1) != 8	      \				|| __builtin_classify_type (Val2) != 8)	      \			 __tgmres = Fct (Val1, Val2, Val3);		      \		       else						      \			 __tgmres = Fct##f (Val1, Val2, Val3);		      \		       __tgmres; }))# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\		       if ((sizeof (Val1) > sizeof (double)		      \			    || sizeof (Val2) > sizeof (double)		      \			    || sizeof (Val3) > sizeof (double))		      \			   && __builtin_classify_type ((Val1) + (Val2)	      \						       + (Val3)) == 8)	      \			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \		       else if (sizeof (Val1) == sizeof (double)	      \				|| sizeof (Val2) == sizeof (double)	      \				|| sizeof (Val3) == sizeof (double)	      \				|| __builtin_classify_type (Val1) != 8	      \				|| __builtin_classify_type (Val2) != 8	      \				|| __builtin_classify_type (Val3) != 8)	      \			 __tgmres = Fct (Val1, Val2, Val3);		      \		       else						      \			 __tgmres = Fct##f (Val1, Val2, Val3);		      \		       __tgmres; }))/* XXX This definition has to be changed as soon as the compiler understands   the imaginary keyword.  */# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \		       if (sizeof (__real__ (Val)) > sizeof (double)	      \			   && __builtin_classify_type (__real__ (Val)) == 8)  \			 {						      \			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \			     __tgmres = __tgml(Fct) (Val);		      \			   else						      \			     __tgmres = __tgml(Cfct) (Val);		      \			 }						      \		       else if (sizeof (__real__ (Val)) == sizeof (double)    \				|| __builtin_classify_type (__real__ (Val))   \				   != 8)				      \			 {						      \			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \			     __tgmres = Fct (Val);			      \			   else						      \			     __tgmres = Cfct (Val);			      \			 }						      \		       else						      \			 {						      \			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \			     __tgmres = Fct##f (Val);			      \			   else						      \			     __tgmres = Cfct##f (Val);			      \			 }						      \		       __tgmres; }))/* XXX This definition has to be changed as soon as the compiler understands   the imaginary keyword.  */# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \		       if (sizeof (Val) == sizeof (__complex__ double)	      \			   || __builtin_classify_type (__real__ (Val)) != 8)  \			 __tgmres = Fct (Val);				      \		       else if (sizeof (Val) == sizeof (__complex__ float))   \			 __tgmres = Fct##f (Val);			      \		       else						      \			 __tgmres = __tgml(Fct) (Val);			      \		       __tgmres; }))/* XXX This definition has to be changed as soon as the compiler understands   the imaginary keyword.  */# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \		       if ((sizeof (__real__ (Val1)) > sizeof (double)	      \			    || sizeof (__real__ (Val2)) > sizeof (double))    \			   && __builtin_classify_type (__real__ (Val1)	      \						       + __real__ (Val2))     \			      == 8)					      \			 {						      \			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \			     __tgmres = __tgml(Fct) (Val1, Val2);	      \			   else						      \			     __tgmres = __tgml(Cfct) (Val1, Val2);	      \			 }						      \		       else if (sizeof (__real__ (Val1)) == sizeof (double)   \				|| sizeof (__real__ (Val2)) == sizeof(double) \				|| (__builtin_classify_type (__real__ (Val1)) \				    != 8)				      \				|| (__builtin_classify_type (__real__ (Val2)) \				    != 8))				      \			 {						      \			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \			     __tgmres = Fct (Val1, Val2);		      \			   else						      \			     __tgmres = Cfct (Val1, Val2);		      \			 }						      \		       else						      \			 {						      \			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \			     __tgmres = Fct##f (Val1, Val2);		      \			   else						      \			     __tgmres = Cfct##f (Val1, Val2);		      \			 }						      \		       __tgmres; }))#else# error "Unsupported compiler; you cannot use <tgmath.h>"#endif/* Unary functions defined for real and complex values.  *//* Trigonometric functions.  *//* Arc cosine of X.  */#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)/* Arc sine of X.  */#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)/* Arc tangent of X.  */#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)/* Arc tangent of Y/X.  */#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)/* Cosine of X.  */#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)/* Sine of X.  */#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)/* Tangent of X.  */#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)/* Hyperbolic functions.  *//* Hyperbolic arc cosine of X.  */#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)/* Hyperbolic arc sine of X.  */#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)/* Hyperbolic arc tangent of X.  */#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)/* Hyperbolic cosine of X.  */#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)/* Hyperbolic sine of X.  */#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)/* Hyperbolic tangent of X.  */#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)/* Exponential and logarithmic functions.  *//* Exponential function of X.  */#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)/* Break VALUE into a normalized fraction and an integral power of 2.  */#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)/* X times (two to the EXP power).  */#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)/* Natural logarithm of X.  */#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)/* Base-ten logarithm of X.  */#ifdef __USE_GNU# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)#else# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)#endif/* Return exp(X) - 1.  */#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)/* Return log(1 + X).  */#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)/* Return the base 2 signed integral exponent of X.  */#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)/* Compute base-2 exponential of X.  */#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)/* Compute base-2 logarithm of X.  */#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)/* Power functions.  *//* Return X to the Y power.  */#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)/* Return the square root of X.  */#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)/* Return `sqrt(X*X + Y*Y)'.  */#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)/* Return the cube root of X.  */#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)/* Nearest integer, absolute value, and remainder functions.  *//* Smallest integral value not less than X.  */#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)/* Absolute value of X.  */#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)/* Largest integer not greater than X.  */#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)/* Floating-point modulo remainder of X/Y.  */#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)/* Round X to integral valuein floating-point format using current   rounding direction, but do not raise inexact exception.  */#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)/* Round X to nearest integral value, rounding halfway cases away from   zero.  */#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)/* Round X to the integral value in floating-point format nearest but   not larger in magnitude.  */#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)/* Compute remainder of X and Y and put in *QUO a value with sign of x/y   and magnitude congruent `mod 2^n' to the magnitude of the integral   quotient x/y, with n >= 3.  */#define remquo(Val1, Val2, Val3) \     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)/* Round X to nearest integral value according to current rounding   direction.  */#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)/* Round X to nearest integral value, rounding halfway cases away from   zero.  */#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)/* Return X with its signed changed to Y's.  */#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)/* Error and gamma functions.  */#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)/* Return the integer nearest X in the direction of the   prevailing rounding mode.  */#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)#define nexttoward(Val1, Val2) \     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)/* Return the remainder of integer divison X / Y with infinite precision.  */#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)#if defined __UCLIBC_SUSV3_LEGACY__/* Return X times (2 to the Nth power).  */#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)#endif/* Return X times (2 to the Nth power).  */#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)/* Return X times (2 to the Nth power).  */#define scalbln(Val1, Val2) \     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)#endif /* UCLIBC_SUSV3_LEGACY *//* Return the binary exponent of X, which must be nonzero.  */#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)/* Return positive difference between X and Y.  */#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)/* Return maximum numeric value from X and Y.  */#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)/* Return minimum numeric value from X and Y.  */#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)/* Multiply-add function computed as a ternary operation.  */#define fma(Val1, Val2, Val3) \     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)/* Absolute value, conjugates, and projection.  *//* Argument value of Z.  */#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)/* Complex conjugate of Z.  */#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)/* Projection of Z onto the Riemann sphere.  */#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)/* Decomposing complex values.  *//* Imaginary part of Z.  */#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)/* Real part of Z.  */#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)#endif /* tgmath.h */
 |