| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 | /* Optimized version of the standard bzero() function.   This file is part of the GNU C Library.   Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.   Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.   Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, see   <http://www.gnu.org/licenses/>.  *//* Return: dest   Inputs:        in0:    dest        in1:    count   The algorithm is fairly straightforward: set byte by byte until we   we get to a 16B-aligned address, then loop on 128 B chunks using an   early store as prefetching, then loop on 32B chucks, then clear remaining   words, finally clear remaining bytes.   Since a stf.spill f0 can store 16B in one go, we use this instruction   to get peak speed.  */#include <sysdep.h>#ifdef __UCLIBC_SUSV3_LEGACY__#undef ret#define dest		in0#define	cnt		in1#define tmp		r31#define save_lc		r30#define ptr0		r29#define ptr1		r28#define ptr2		r27#define ptr3		r26#define ptr9		r24#define	loopcnt		r23#define linecnt		r22#define bytecnt		r21/* This routine uses only scratch predicate registers (p6 - p15) */#define p_scr		p6	/* default register for same-cycle branches */#define p_unalgn	p9#define p_y		p11#define p_n		p12#define p_yy		p13#define p_nn		p14#define movi0		mov#define MIN1		15#define MIN1P1HALF	8#define LINE_SIZE	128#define LSIZE_SH        7			/* shift amount */#define PREF_AHEAD	8#define USE_FLP#if defined(USE_INT)#define store		st8#define myval		r0#elif defined(USE_FLP)#define store		stf8#define myval		f0#endif.align	64ENTRY(bzero){ .mmi	.prologue	alloc	tmp = ar.pfs, 2, 0, 0, 0	lfetch.nt1 [dest]	.save   ar.lc, save_lc	movi0	save_lc = ar.lc} { .mmi	.body	mov	ret0 = dest		/* return value */	nop.m	0	cmp.eq	p_scr, p0 = cnt, r0;; }{ .mmi	and	ptr2 = -(MIN1+1), dest	/* aligned address */	and	tmp = MIN1, dest	/* prepare to check for alignment */	tbit.nz p_y, p_n = dest, 0	/* Do we have an odd address? (M_B_U) */} { .mib	mov	ptr1 = dest	nop.i	0(p_scr)	br.ret.dpnt.many rp		/* return immediately if count = 0 */;; }{ .mib	cmp.ne	p_unalgn, p0 = tmp, r0} { .mib					/* NB: # of bytes to move is 1 */	sub	bytecnt = (MIN1+1), tmp		/*     higher than loopcnt */	cmp.gt	p_scr, p0 = 16, cnt		/* is it a minimalistic task? */(p_scr)	br.cond.dptk.many .move_bytes_unaligned	/* go move just a few (M_B_U) */;; }{ .mmi(p_unalgn) add	ptr1 = (MIN1+1), ptr2		/* after alignment */(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		/* after alignment */(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	/* should we do a st8 ? */;; }{ .mib(p_y)	add	cnt = -8, cnt(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	/* should we do a st4 ? */} { .mib(p_y)	st8	[ptr2] = r0,-4(p_n)	add	ptr2 = 4, ptr2;; }{ .mib(p_yy)	add	cnt = -4, cnt(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	/* should we do a st2 ? */} { .mib(p_yy)	st4	[ptr2] = r0,-2(p_nn)	add	ptr2 = 2, ptr2;; }{ .mmi	mov	tmp = LINE_SIZE+1		/* for compare */(p_y)	add	cnt = -2, cnt(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	/* should we do a st1 ? */} { .mmi	nop.m	0(p_y)	st2	[ptr2] = r0,-1(p_n)	add	ptr2 = 1, ptr2;; }{ .mmi(p_yy)	st1	[ptr2] = r0	cmp.gt	p_scr, p0 = tmp, cnt		/* is it a minimalistic task? */} { .mbb(p_yy)	add	cnt = -1, cnt(p_scr)	br.cond.dpnt.many .fraction_of_line	/* go move just a few */;; }{ .mib	nop.m	0	shr.u	linecnt = cnt, LSIZE_SH	nop.b	0;; }	.align 32.l1b:	/* ------------------  L1B: store ahead into cache lines; fill later */{ .mmi	and	tmp = -(LINE_SIZE), cnt		/* compute end of range */	mov	ptr9 = ptr1			/* used for prefetching */	and	cnt = (LINE_SIZE-1), cnt	/* remainder */} { .mmi	mov	loopcnt = PREF_AHEAD-1		/* default prefetch loop */	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	/* check against actual value */;; }{ .mmi(p_scr)	add	loopcnt = -1, linecnt	add	ptr2 = 16, ptr1	/* start of stores (beyond prefetch stores) */	add	ptr1 = tmp, ptr1	/* first address beyond total range */;; }{ .mmi	add	tmp = -1, linecnt	/* next loop count */	movi0	ar.lc = loopcnt;; }.pref_l1b:{ .mib	stf.spill [ptr9] = f0, 128	/* Do stores one cache line apart */	nop.i   0	br.cloop.dptk.few .pref_l1b;; }{ .mmi	add	ptr0 = 16, ptr2		/* Two stores in parallel */	movi0	ar.lc = tmp;; }.l1bx: { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 32 ;; } { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 32 ;; } { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 64	cmp.lt	p_scr, p0 = ptr9, ptr1	/* do we need more prefetching? */ ;; }{ .mmb	stf.spill [ptr2] = f0, 32(p_scr)	stf.spill [ptr9] = f0, 128	br.cloop.dptk.few .l1bx;; }{ .mib	cmp.gt  p_scr, p0 = 8, cnt	/* just a few bytes left ? */(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment;; }.fraction_of_line:{ .mib	add	ptr2 = 16, ptr1	shr.u	loopcnt = cnt, 5	/* loopcnt = cnt / 32 */;; }{ .mib	cmp.eq	p_scr, p0 = loopcnt, r0	add	loopcnt = -1, loopcnt(p_scr)	br.cond.dpnt.many .store_words;; }{ .mib	and	cnt = 0x1f, cnt		/* compute the remaining cnt */	movi0   ar.lc = loopcnt;; }	.align 32.l2:	/* -----------------------------  L2A:  store 32B in 2 cycles */{ .mmb	store	[ptr1] = myval, 8	store	[ptr2] = myval, 8;; } { .mmb	store	[ptr1] = myval, 24	store	[ptr2] = myval, 24	br.cloop.dptk.many .l2;; }.store_words:{ .mib	cmp.gt	p_scr, p0 = 8, cnt	/* just a few bytes left ? */(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	/* Branch */;; }{ .mmi	store	[ptr1] = myval, 8	/* store */	cmp.le	p_y, p_n = 16, cnt	/* */	add	cnt = -8, cnt		/* subtract */;; }{ .mmi(p_y)	store	[ptr1] = myval, 8	/* store */(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt(p_y)	add	cnt = -8, cnt		/* subtract */;; }{ .mmi					/* store */(p_yy)	store	[ptr1] = myval, 8(p_yy)	add	cnt = -8, cnt		/* subtract */;; }.move_bytes_from_alignment:{ .mib	cmp.eq	p_scr, p0 = cnt, r0	tbit.nz.unc p_y, p0 = cnt, 2	/* should we terminate with a st4 ? */(p_scr)	br.cond.dpnt.few .restore_and_exit;; }{ .mib(p_y)	st4	[ptr1] = r0,4	tbit.nz.unc p_yy, p0 = cnt, 1	/* should we terminate with a st2 ? */;; }{ .mib(p_yy)	st2	[ptr1] = r0,2	tbit.nz.unc p_y, p0 = cnt, 0	/* should we terminate with a st1 ? */;; }{ .mib(p_y)	st1	[ptr1] = r0;; }.restore_and_exit:{ .mib	nop.m	0	movi0	ar.lc = save_lc	br.ret.sptk.many rp;; }.move_bytes_unaligned:{ .mmi       .pred.rel "mutex",p_y, p_n       .pred.rel "mutex",p_yy, p_nn(p_n)	cmp.le  p_yy, p_nn = 4, cnt(p_y)	cmp.le  p_yy, p_nn = 5, cnt(p_n)	add	ptr2 = 2, ptr1} { .mmi(p_y)	add	ptr2 = 3, ptr1(p_y)	st1	[ptr1] = r0, 1		/* fill 1 (odd-aligned) byte */(p_y)	add	cnt = -1, cnt		/* [15, 14 (or less) left] */;; }{ .mmi(p_yy)	cmp.le.unc p_y, p0 = 8, cnt	add	ptr3 = ptr1, cnt	/* prepare last store */	movi0	ar.lc = save_lc} { .mmi(p_yy)	st2	[ptr1] = r0, 4		/* fill 2 (aligned) bytes */(p_yy)	st2	[ptr2] = r0, 4		/* fill 2 (aligned) bytes */(p_yy)	add	cnt = -4, cnt		/* [11, 10 (o less) left] */;; }{ .mmi(p_y)	cmp.le.unc p_yy, p0 = 8, cnt	add	ptr3 = -1, ptr3		/* last store */	tbit.nz p_scr, p0 = cnt, 1	/* will there be a st2 at the end ? */} { .mmi(p_y)	st2	[ptr1] = r0, 4		/* fill 2 (aligned) bytes */(p_y)	st2	[ptr2] = r0, 4		/* fill 2 (aligned) bytes */(p_y)	add	cnt = -4, cnt		/* [7, 6 (or less) left] */;; }{ .mmi(p_yy)	st2	[ptr1] = r0, 4		/* fill 2 (aligned) bytes */(p_yy)	st2	[ptr2] = r0, 4		/* fill 2 (aligned) bytes */					/* [3, 2 (or less) left] */	tbit.nz p_y, p0 = cnt, 0	/* will there be a st1 at the end ? */} { .mmi(p_yy)	add	cnt = -4, cnt;; }{ .mmb(p_scr)	st2	[ptr1] = r0		/* fill 2 (aligned) bytes */(p_y)	st1	[ptr3] = r0		/* fill last byte (using ptr3) */	br.ret.sptk.many rp;; }END(bzero)#endif
 |