| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 | /*							bdtr.c * *	Binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtr(); * * y = bdtr( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the Binomial * probability density: * *   k *   --  ( n )   j      n-j *   >   (   )  p  (1-p) *   --  ( j ) *  j=0 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p), with p between 0 and 1. * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between 0.001 and 1: *    IEEE     0,100       100000      4.3e-15     2.6e-16 * See also incbet.c. * * ERROR MESSAGES: * *   message         condition      value returned * bdtr domain         k < 0            0.0 *                     n < k *                     x < 0, x > 1 *//*							bdtrc() * *	Complemented binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtrc(); * * y = bdtrc( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms k+1 through n of the Binomial * probability density: * *   n *   --  ( n )   j      n-j *   >   (   )  p  (1-p) *   --  ( j ) *  j=k+1 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p). * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between 0.001 and 1: *    IEEE     0,100       100000      6.7e-15     8.2e-16 *  For p between 0 and .001: *    IEEE     0,100       100000      1.5e-13     2.7e-15 * * ERROR MESSAGES: * *   message         condition      value returned * bdtrc domain      x<0, x>1, n<k       0.0 *//*							bdtri() * *	Inverse binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtri(); * * p = bdtr( k, n, y ); * * DESCRIPTION: * * Finds the event probability p such that the sum of the * terms 0 through k of the Binomial probability density * is equal to the given cumulative probability y. * * This is accomplished using the inverse beta integral * function and the relation * * 1 - p = incbi( n-k, k+1, y ). * * ACCURACY: * * Tested at random points (a,b,p). * *               a,b                     Relative error: * arithmetic  domain     # trials      peak         rms *  For p between 0.001 and 1: *    IEEE     0,100       100000      2.3e-14     6.4e-16 *    IEEE     0,10000     100000      6.6e-12     1.2e-13 *  For p between 10^-6 and 0.001: *    IEEE     0,100       100000      2.0e-12     1.3e-14 *    IEEE     0,10000     100000      1.5e-12     3.2e-14 * See also incbi.c. * * ERROR MESSAGES: * *   message         condition      value returned * bdtri domain     k < 0, n <= k         0.0 *                  x < 0, x > 1 *//*								bdtr() *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern double incbet ( double, double, double );extern double incbi ( double, double, double );extern double pow ( double, double );extern double log1p ( double );extern double expm1 ( double );#elsedouble incbet(), incbi(), pow(), log1p(), expm1();#endifdouble bdtrc( k, n, p )int k, n;double p;{double dk, dn;if( (p < 0.0) || (p > 1.0) )	goto domerr;if( k < 0 )	return( 1.0 );if( n < k )	{domerr:	mtherr( "bdtrc", DOMAIN );	return( 0.0 );	}if( k == n )	return( 0.0 );dn = n - k;if( k == 0 )	{	if( p < .01 )		dk = -expm1( dn * log1p(-p) );	else		dk = 1.0 - pow( 1.0-p, dn );	}else	{	dk = k + 1;	dk = incbet( dk, dn, p );	}return( dk );}double bdtr( k, n, p )int k, n;double p;{double dk, dn;if( (p < 0.0) || (p > 1.0) )	goto domerr;if( (k < 0) || (n < k) )	{domerr:	mtherr( "bdtr", DOMAIN );	return( 0.0 );	}if( k == n )	return( 1.0 );dn = n - k;if( k == 0 )	{	dk = pow( 1.0-p, dn );	}else	{	dk = k + 1;	dk = incbet( dn, dk, 1.0 - p );	}return( dk );}double bdtri( k, n, y )int k, n;double y;{double dk, dn, p;if( (y < 0.0) || (y > 1.0) )	goto domerr;if( (k < 0) || (n <= k) )	{domerr:	mtherr( "bdtri", DOMAIN );	return( 0.0 );	}dn = n - k;if( k == 0 )	{	if( y > 0.8 )		p = -expm1( log1p(y-1.0) / dn );	else		p = 1.0 - pow( y, 1.0/dn );	}else	{	dk = k + 1;	p = incbet( dn, dk, 0.5 );	if( p > 0.5 )		p = incbi( dk, dn, 1.0-y );	else		p = 1.0 - incbi( dn, dk, y );	}return( p );}
 |